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Abstract Soil carbon dynamics of terrestrial ecosystems play a significant role in the global carbon cycle.
Microbial-based decomposition models have seen much growth recently for quantifying this role, yet
dormancy as a common strategy used by microorganisms has not usually been represented and tested in
these models against field observations. Here we developed an explicit microbial-enzyme decomposition
model and examined model performance with and without representation of microbial dormancy at six
temperate forest sites of different forest types. We then extrapolated the model to global temperate forest
ecosystems to investigate biogeochemical controls on soil heterotrophic respiration and microbial dormancy
dynamics at different temporal-spatial scales. The dormancy model consistently produced better match
with field-observed heterotrophic soil CO2 efflux (RH) than the no dormancy model. Our regional modeling
results further indicated that models with dormancy were able to produce more realistic magnitude of
microbial biomass (<2% of soil organic carbon) and soil RH (7.5 ± 2.4 Pg C yr�1). Spatial correlation analysis
showed that soil organic carbon content was the dominating factor (correlation coefficient = 0.4–0.6) in the
simulated spatial pattern of soil RH with both models. In contrast to strong temporal and local controls of soil
temperature and moisture on microbial dormancy, our modeling results showed that soil carbon-to-nitrogen
ratio (C:N) was a major regulating factor at regional scales (correlation coefficient =�0.43 to �0.58), indicating
scale-dependent biogeochemical controls on microbial dynamics. Our findings suggest that incorporating
microbial dormancy could improve the realism of microbial-based decomposition models and enhance the
integration of soil experiments and mechanistically based modeling.

1. Introduction

Soil has always been a focus of climate change studies due to its large carbon (C) stocks—the global soil
organic C (SOC) stock is at least four times greater than atmospheric C [Irvine and Law, 2002; Jobbágy and
Jackson, 2000], and soil respiration is the second largest flux between the biosphere and the atmosphere
following photosynthesis [Raich and Potter, 1995]. Therefore, soil C dynamics plays a key role in net C seques-
tration of terrestrial ecosystems and is essential to our understanding of biogeochemical cycles and its
climate-C interactions [IPCC, 2013].

Recent comprehensive analyses have shown that there are notable limitations of traditional first-order decom-
position algorithms in current Earth system models. Those decomposition models are not able to capture
the spatial distributions of SOC stocks and primary drivers of SOC dynamics [Todd-Brown et al., 2013], while
microbial-based soil organic matter decomposition models have been increasingly used at both site- and
global-scale studies [Allison et al., 2010;He et al., 2014b;Wieder et al., 2013], althoughmore rigorous examination
of thesemodels is still needed [Li et al., 2014]. The current generation ofmicrobial-based decompositionmodels
usually features a common framework where enzyme production andmicrobial physiology are associated with
total microbial biomass (MIC), which has a direct coupling with SOC enzymatic decomposition.
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A key microbial life history trait that is usually lacking in these models is microbial dormancy. Dormancy is
a common, bet-hedging strategy used by microorganisms when environmental conditions limit growth
and reproduction [Lennon and Jones, 2011]. When microorganisms are confronted with unfavorable
conditions, they may enter a reversible state of low metabolic activity and resuscitate when favorable
conditions occur. Microorganisms in this state of reduced metabolic activity are not able to drive biogeo-
chemical processes such as soil CO2 production; therefore, only active microorganisms are involved
in utilizing substrates in soils [Blagodatskaya and Kuzyakov, 2013]. Although some studies have explicitly
incorporated dormancy into models [Ayati, 2012; Wirtz, 2003], they are mostly confined to incubation
experiments, and applications of microbial models in natural environments generally do not consider
dormancy.

There are four motivations that led to the inception of this study to represent dormancy in microbial-based
decomposition models. First, the current coupled SOC-MIC structure leads to oscillatory behavior of soil
organic and microbial C pools with unrealistically large amplitudes of interannual variation [Y. Wang et al.,
2014; Wieder et al., 2013]; thus, incorporating dormancy may structurally improve model realism. Second,
there is a scale mismatch in current measurement procedures of microbial biomass since different portions
of microbial biomass are actually measured. For example, substrate-induced respiration and fumigation tech-
niques measure the total microbial biomass when the conversion factor is used, whereas direct microscopy
combined with cell staining such as fluorescence in situ hybridization measures the active portion of total
biomass [Blagodatskaya and Kuzyakov, 2013] Along this line, the aforementioned inconsistency may pose
challenges in data-model integration and in microbial model comparisons and evaluation. Finally, the
transition between dormant and active states of microbes can be fast (in the order of hours to days) with
substantial magnitude change (e.g., an order of magnitude) in the portion of active biomass and the relative
abundance of different phylogenetically clustered microbial groups; however, these transitions usually
feature little change in total microbial biomass [Hagerty et al., 2014; Placella et al., 2012]. Thus, total microbial
biomass may not be a sufficient indicator of microbial activities as opposed to the more responsive active
portion of microbial biomass.

In this study, we hypothesize that (1) a microbial model incorporated with dormancy would outperform
the model without dormancy at site-level parameterization and (2) a microbial model with dormancy would
produce more realistic microbial biomass and soil RH on both site and regional scales. We compared two
microbial models with and without representation of dormancy to examine the site and regional patterns
of the estimated SOC and microbe-related variables. The model parsimony and overfitting potentials were
also considered during the comparison. We also discuss the primary controls on microbial and SOC dynamics
at different tempospatial scales.

2. Methods
2.1. Model Description

In this study, dormancy was incorporated into an existing microbial-enzyme conceptual framework
described by Allison et al. [2010], in which an Arrhenius formulation of temperature sensitivity was replaced

with a simplified temperature-sensitive Q10 function (Q
temp�15

10
10 ) to reduce the number of model parameters. The

reversible transition between dormant and active states of microbial biomass is assumed to be controlled by
environmental cues—directly accessible substrates, as demonstrated in G. Wang et al. [2014]. We integrate
Davidson et al.’s [2012] conceptual framework of quantifying concentration of soluble C substrates that are
directly accessible for microbial assimilation, thus building a direct linkage between environmental factors
with microbial state transitions. Substrate quality is also reflected in the model through a generic index of soil
C:N ratio [Manzoni et al., 2008], and the assimilation of substrate by microorganisms is assumed to be regu-
lated by the C:N ratio of microbial biomass and that of the soil. We apply the model to simulate the top 30 cm
of the soil due to data availability for site validation. The equations for themodel with microbial dormancy are
as follows:

dSOC
dt

¼ Input� VmaxQ
temp�15

10
10enz ENZ

SOC
Km þ SOC

120� CNsoilð Þ
zfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl}|fflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl{Decomposition

(1)
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dSolubleC
dt

¼ Decompostion� 1
Yg

ϕ
α
mRQ

temp�15
10

10enz Ba
CNsoil

CNmic

� �0:6zfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl}|fflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl{Microbial uptake

þ Bardeath þ ENZrloss (2)

dBa
dt

¼ ϕ
α
� 1

� �
mRQ

temp�15
10

10mic Ba
CNsoil

CNmic

� �0:6
� 1� ϕð ÞmRQ

temp�15
10

10mic Ba

zfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl}|fflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl{
Transition from
active to dormant

þϕmRQ
temp�15

10
10mic Bd

zfflfflfflfflfflfflfflfflfflfflfflfflffl}|fflfflfflfflfflfflfflfflfflfflfflfflffl{
Transition from
dormant to active

� Barprod � Bardeath (3)

dBd
dt

¼ �βmRQ
temp�15

10
10mic Bd þ 1� ϕð ÞmRQ

temp�15
10

10mic Ba � ϕmRQ
temp�15

10
10mic Bd (4)

dENZ
dt

¼ Barprod � ENZrloss (5)

where “Input” denotes the overall C input to the soil system, including litterfall and root exudates; state
variables are SOC, SolubleC, Ba, Bd, and ENZ, corresponding to SOC content, soluble C content, microbial
biomass in active and dormant states, and enzyme C (mgC cm�2), respectively (Figure 1); temp is soil tem-
perature at each time step t; ϕ is the directly accessible substrate for microbial assimilation, calculated based

onMichaelis-Menten kinetics formulated asϕ ¼ SolubleC�Dliq �θ3

Ks þSolubleC�Dliq �θ3
, where Dliq is a diffusion coefficient

of the substrate in the liquid phase (determined by assuming all soluble substrate is directly accessible at the
reaction site, formulated as Dliq = 1/(1� BD/PD)3; BD is the bulk density and PD is the soil particle density); θ is
the volumetric soil moisture content; and Ks is corresponding Michaelis constant [Davidson et al., 2012]. A
detailed description for other parameters is summarized in Table 1. The soil heterotrophic respiration gener-
ated from this conceptual model is expressed as

RH ¼ mRQ
temp�15

10
10enz Ba þ βmRQ

temp�15
10

10mic Bd þ
1� Yg

Yg

� �
ϕ
α
mRQ

temp�15
10

10enz Ba
CNsoil

CNmic

� �0:6
(6)

where the first two terms are maintenance respiration from the active and dormant microorganisms, respec-
tively. The last term is the CO2 produced during the microbial uptake of substrate. Adding up equations
(3) and (4) shown above gives the model without dormancy (Figure 1). Note that the dormancy model only
introduces two more free parameters than the no dormancy model: (1) the ratio of dormant microbial
maintenance rate to that of active biomass (β), which has a well-defined range and has marginal contribu-
tion to the overall CO2 efflux, and (2) the initial active fraction (r0), to which C dynamics is not sensitive
because of the fast response of microbes to the environment (Table 1). Sensitivity analysis showed that
simulated SOC and microbial biomass were not sensitive to these two parameters (Figure S1 in the

Figure 1. Schematic diagram of the conceptual representation of the dormancy model.
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supporting information). In addition, inclusion of these two parameters does not significantly alter the
correlation structure between parameters (Figure S2); however, the structural changes induced by the
dormancy mechanism may be more notable.

Environmental factors such as substrate availability are often thought to be the primary triggering mechan-
ism ending dormancy [Lennon and Jones, 2011]. Therefore, we adopted the formulation described in G. Wang
et al. [2014], where the transition between active and dormant states of microorganisms is scaled linearly
with substrate availability (ϕ), which is a Michaelis-Menten function of water availability, and the direction
of the net transition is determined by the balance of maintenance metabolic requirement.

We recognize that our model only simulates C dynamics, and decomposition is effectively influenced by
various nutrients through kinetic and stoichiometric constraints that are not explicitly represented in this
model [Sinsabaugh et al., 2013]. Instead of using a more sophisticated modeling framework, we introduced

Table 1. Description of Parameters Used in the Model and the Prior Used in Inverse Modelinga

Parameter Description
Prior/Value

(Dormancy Model)
Prior/Value

(No Dormancy Model) Notes and Citations

α Maintenance weight, mR/(μG +mR), where
μG is the specific growth rate (h�1)

[0.01, 0.5] [0.005, 0.05] G. Wang et al. [2014]

β Ratio of dormant microbial maintenance
rate to mR

[0.0005, 0.005] - G. Wang et al. [2014], Blagodatskaya and
Kuzyakov [2013]

mR Specific maintenance rate for active
biomass (h�1)

[0.001, 0.08] [0.0001, 0.008] G. Wang et al. [2014], Schimel and
Weintraub [2003], Blagodatskaya and

Kuzyakov [2013]

Ks Half-saturation constant for directly
accessible substrate (mg C cm�2)

[0.01, 10] Same Calculated based on approximate range
of SolubleC/SOC ratio of 1e�4 to
1e�3 [Davidson et al., 2012] and

reported Ks for substrate breakdown
of 72mg kg�1 soil [Xu et al., 2014]

Km Half-saturation constant for enzymatic
decay of SOC (mg C cm�2)

[200, 1000]b Same Assuming SOC is not at saturation for
enzymatic decay [Schimel and

Weintraub, 2003]

Vmax Maximum SOC decay rate [1e�4, 5e�3] Same Calculated based on the magnitude of
litter input C

rprod Enzyme production rate of active
microorganism (h�1)

[1e�4, 8e�4] [1e�5, 8e�5] Schimel and Weintraub [2003] assumes
5% of the C uptake bymicroorganism

is allocated to exoenzyme
production (d�1). This is equivalent
to an hourly rate of 2e�3 h�1; the
typical hourly uptake rate in our

model is ~0.3 per microbial biomass

rloss Enzyme loss rate (h�1) [0.0005, 0.002] Same Allison et al. [2010], Schimel and
Weintraub [2003]

rdeath Potential rate of microbial death (h�1) [2e�4, 2e�3] [2e�5, 2e�4] Allison et al. [2010], Xu et al. [2014]

Q10enz Temperature effects on enzyme activity
(rate change per 10 °C increase in

temperature). Based on 6% rate increase
per degree Celsius

1.79 Same Purich [2009]

Q10mic Temperature effects on microbial
metabolic activity (rate change per 10 °C

increase in temperature). Based on
0.65 eV activation energy for soils

[1.5, 3.5] Same Yvon-Durocher et al. [2012]

Yg True growth yield, or carbon use efficiency [0.3, 0.7] Same Sinsabaugh et al. [2013]

Yg_slope Temperature sensitivity of Yg per degree
Celsius increase

�0.012 Same German et al. [2012]

Initial active fraction (r0) Active portion of microbial biomass [0.05, 0.3] - Lennon and Jones [2011]

aThe value is given if the parameter is predefined to be a constant and is not used in inverse modeling. Parameters that are per microbial biomass based have
different priors for the dormancy and no dormancy models. Note that the model simulates the top 30 cm of soil.

bLower bound of 50 is used for US-MOz due to its low SOC content.
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a temperature- and population size-dependent scaling factor on the potential microbial death rate, formu-

lated as 1:5
temp�15

10 � Ba
SOC�0:025, where a metabolic temperature sensitivity of 1.5 and a population capacity of

2.5% of SOC are assumed for temperate forest soils [Xu et al., 2013; Yvon-Durocher et al., 2012]. This multiplier
is used to modify the parameter rdeath and implicitly represents competition for nutrients and downregulates
microbial growth.

2.2. Model Calibration and Validation

We calibrated the model at six different temperate forest sites in northeastern China (three) and contermi-
nous U.S. (three) with a latitudinal span of 38–45°N using a global optimization algorithm known as the
SCE-UA (shuffled complex evolution) [Duan et al., 1994] (Table 2). An ensemble of 100 independent optimiza-
tion runs were performed based on prior ranges from the literature (Table 1), each using different random
number seeds to determine the successive evolution steps. The resulting parameter distribution was used
for the correlation analysis mentioned above and for spatial extrapolations. The three northeastern China
sites (CN-Mixed, CN-Oak, and CN-Lar) were all trenched plots (no litter input) with monthly measured RH, soil
temperature, and gravimetric soil moisture content at 10 cm from 2004 to 2007 [C. Wang et al., 2006]. The
three U.S. sites (US-MRf, US-Me2, and US-MOz) are part of the AmeriFlux network. The level 2 (gap-filled) eddy
covariance data with half-hourly measured soil temperature (at 10 cm, °C), volumetric soil moisture content
(at 10 cm, %; VSM), and automated soil chamber-measured soil respiration (μmolm�2 s�1) were used for this
study [Irvine and Law, 2002]. For the U.S. sites, approximately 50% of soil respiration was assumed to be RH
[Hanson et al., 2000]. Litterfall was assumed to be a fixed proportion (0.3) of net primary production (NPP)
based on field litterfall measurements and remote sensing-derived NPP estimation, and we assume
NPP/GPP= 0.45 (gross primary production, GPP) based on the eddy covariance measurements at the
US-MRf site. GPPs at the US-Me2 and US-MRf sites (see Table 2) were also obtained from level 2 data but were
not available for the US-MOz site. Therefore, for the RH measurement period (2004–2007), we used level 4
gap-filled net ecosystem exchange (NEE) and we calculated GPP based on NEE andmeteorological data using
an online flux partitioning tool (http://www.bgc-jena.mpg.de/~MDIwork/eddyproc/upload.php) [Lasslop
et al., 2010]. Site-level state variables (e.g., SOC content, microbial biomass, and soil C:N) served as initial states
for the model calibration. Microbial biomass data are not available at the three U.S. sites (Table 2); thus, the
MIC/SOC ratio of the same forest type reported in Xu et al. (2013) was used and biomass was calculated based
on SOC content. Note that parameter priors that were microbial biomass specific were rescaled based on the
active portion of microbial biomass (Table 1). At each site, the first 75% of total available data were used for
calibration and the remaining was used for validation. Model evaluation statistics were calculated using the
whole data series.

2.3. Data Sources for Spatial Extrapolation

We used the above calibrated ecosystem-specific parameters and extrapolated to the whole temperate forest
region defined as the latitudinal band from 25°N to 50°N. We did not include the Southern Hemisphere due
to lack of calibration site located in the region. The average parameters of the corresponding forest types
are used for each forest type involved in the latitudinal band. Forest land cover information was extracted
from the Moderate Resolution Imaging Spectroradiometer land cover product (MCD12C1) for the period
2000–2012, and annual mean land cover distribution was used. The original 0.05° × 0.05° (lon × lat) resolution
grid was aggregated to 0.5° × 0.5° using a majority resampling approach to best preserve the spatial structure
of the major classes. NPP (2000–2012, annual mean) data were extracted from MOD17A3 L4 Global 1 km
product (version 55) [Zhao and Running, 2010]. The original data were aggregated to 0.5° × 0.5° using the
areal mean. Soil physical properties and organic C and N content of the top 30 cm were obtained from
gridded Global Soil Data Set for use in Earth System Models (GSDE) data set [Shangguan et al., 2014].
Particle density was calculated based on bulk density and porosity, and porosity was estimated using volu-
metric soil moisture (VSM) at -10 kPa (provided in GSDE). Specifically, we assumed saturated VSM is the same
as VSM at �10 kPa for silt loam soil and we added 10% for sandy loam soil based on the soil water retention
curve [Cornelis et al., 2005]. Soil was classified according to soil taxonomy (Soil Survey Staff, 2003) and using
sand, silt, and clay content from GSDE data set. For transient simulations, we used CMIP5 historical runs
(CMIP5 30 year run) initialized in year 2006 from CCSM4 land modeling realm (ensemble = r1i1p1) to retrieve
soil temperature (tsl, average of top 10 cm) and soil water content in the top 10 cm (mrsos) (http://www.
earthsystemgrid.org). Soil water content inmass was converted to soil volumetric moisture using relevant soil
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properties provided by the GSDE data set. Soil temperature and moisture data were interpolated from
0.9° × 1.25° to 0.5° × 0.5° using a bilinear interpolation method [T. Wang et al., 2006].

2.4. Statistical Analysis

In addition to evaluating the models’ capability to replicate SOC and RH, we are also interested in the overall
functional correlations between dormancy and related environmental factors as represented in the models;
we choose to use simple Pearson correlation for spatial correlation analysis. The spatial extrapolation used
the soil temperature and moisture profile from 2006 and ran for 3 years, and the simulation results for the last
year were used for spatial grid-based and temporal correlation analyses. For model calibration and validation,
we used root-mean-square error (RMSE), parameter-adjusted coefficient of determination (adj-R2), Nash-

Sutcliffe model efficiency coefficient (NS coefficient), and adjusted RMSE (
ffiffiffiffiffiffiffi
SSE
n�k

q
) which accounts for model

parsimony to show model performance. RMSE measures the mean difference between modeled and
observed values, adj-R2 indicates how well simulations capture the variations in the observations, and
Nash-Sutcliffe coefficient denotes how well the model predictions are in comparison to model mean (same
definition as the coefficient of determination R2 used in linear regression).

3. Results
3.1. Site-Level Calibration and Validation

Both the dormancy and no dormancy models can reproduce the observed soil RH reasonably well. The
dormancy model across the six sites showed adj-R2 over the whole measurement period ranging from
0.49 to 0.76 (Table 3), with Nash-Sutcliffe model efficiency coefficients of similar range (0.42 to 0.75). The
no dormancy model performed notably worse in five out of the six sites (except US-MRf site) as adj-R2 ranged
from 0.29 to 0.58; the Nash-Sutcliffe coefficients were also much lower and were even negative at three sites
(Table 3). The same pattern holds after accounting for the number of model parameters (parsimony and
adjusted RMSE, Table 3). The no dormancy model performed especially poorly based on comparison to
observed soil respiration well at Missouri Ozark AmeriFlux site (US-MOz) (adj-R2 = 0.11), likely because the
low SOC content at this site makes it more difficult to find an appropriate Km due to its high sensitivity
(see discussion in section 4.3). A paired t-test on root-mean-square error, adj-R2, and Nash-Sutcliffe coefficient
showed significant differences between the two models (df =5; p< 0.05 for RMSE, p< 0.01 for adj-R2, and

Table 3. Model Evaluation Statistics From Best Inverse Parameter Estimation for Dormancy and No Dormancy Model at
the Six Temperate Forest Sitesa

Model
RMSE (SD)**

(mg C cm�2 h�1) Adjusted R2 (SD)*** NS Coefficient**
Seasonal MIC Amplitude

(mg C cm�2)**
Adjusted RMSE

(mg C cm�2 h�1)*

Dormancy model
CN-Mixed 0.0037 0.58 0.54 2.82 0.0052
CN-Oak 0.0030 0.73 0.72 0.92 0.0044
CN-Lar 0.0017 0.74 0.72 0.68 0.0023
US-MRf 0.0011 0.76 0.75 1.72 0.0011
US-Me2 0.0011 0.66 0.63 1.97 0.0011
US-MOz 0.0018 0.49 0.42 1.14 0.0018

No dormancy model
CN-Mixed 0.0080 0.29 �1.39 5.79 0.010
CN-Oak 0.0044 0.38 �1.13 6.68 0.0059
CN-Lar 0.0031 0.49 0.32 7.60 0.0039
US-MRf 0.0009 0.70 0.69 2.39 0.0009
US-Me2 0.0019 0.58 0.29 3.60 0.0019
US-MOz 0.0045 0.11 �2.5 2.80 0.0045

aNS is the Nash-Sutcliffe model efficiency coefficient. Adjusted RMSE is a measure of model goodness of fit adjusted
for the number of free parameters in the model. The significance of the difference of metrics between the two models is
tested using paired t-test.
*Metrics are significantly different at p< 0.1;
**p< 0.05;
***p< 0.01.
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p< 0.05 for Nash-Sutcliffe coefficient). Simulated dynamics of various C pools (e.g., SOC, SolubleC, ENZ, and MIC)
of the two models exhibited similar patterns over time (Figures 2 and 3).

SOC at US-Me2 showed a slight decline over the course of 11 years in both models (Figures 2a and 2e), with
SolubleC content showing a seasonal fluctuation antiphased with microbial biomass due to active substrate
uptake during summer, thus less substrate availability, and suppressed microbial activity during winter,
which led to the accumulation of substrate (Figures 2a and 2e). The active portion of microbial biomass
tracked closely the changes in soil moisture, despite the dramatically different moisture regimes at the two
sites, where US-Me2 site experienced a moderate drought during summer while the CN-Lar site featured
benign moisture conditions for microbial decomposition (Figures 2b, 2f, 3b, and 3f). It is worth noting here
that the seasonal MIC amplitude (calculated as the difference between annual maximum and minimum
MIC) was always much larger (up to two times larger) in no dormancy models than in the dormancy models
(Table 3 and Figures 2b, 2g, 3b, and 3g). Thus, the magnitude of the oscillations in the dormancy model is
significantly smaller than in the no dormancy model (model difference df = 5, p< 0.05).

Figure 2. Modeled SOC decomposition dynamics at an AmeriFlux ponderosa pine forest in the United States (US-Me2). (a–d) Outputs from the dormancy model;
(e, g, h) Outputs from the no dormancy model. (f) is the measured soil temperature and volumetric moisture content at the site. Both models reproduced observed CO2,
but there is less oscillation in microbial biomass in the dormancy model (Figures 2b and 2g), and the active fraction of microbial biomass closely tracked soil moisture
conditions (Figures 2b and 2f). Legend in the figure denotes the following: Ba—active microbial biomass; Bd—dormancy microbial biomass; r—active portion of microbial
biomass; MIC—total microbial biomass in the no dormancy model; ENZ—enzyme carbon.
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3.2. Inversed Model Parameters

Parameters that have biogeochemical meaning should reflect the patterns that characterize different ecosys-
tem properties. Our mixed forest site (CN-mixed) generally showed intermediate parameter values compared
to deciduous broadleaf and evergreen needleleaf forests (Figure 4). Some parameters exhibited distinct
patterns among deciduous broadleaf and evergreen needleleaf forests. For instance, microbial maintenance
respiration (mR) was overall higher in evergreen needleleaf forests than in deciduous broadleaf forests
(Figure 4c), but the opposite was seen for the initial active fraction (Figure 4l), indicating more stressed soil
environment and higher energy limitation for microorganisms in evergreen needleleaf forests due to less
substrate availability and poorer substrate quality. For other parameters, especially microbial- and enzyme-
related parameters, the differences between the two major forest types were not significant (Figures 4f–4i).
The half-saturation constant (Km) is highest in the US-MOz site (Figure 4e), because it has the highest SOC
content and the Michaelis-Menten formulation in the SOC enzymatic decay process requires a high Km to
maintain the relative substrate level within a reasonable range (otherwise the decay rate will be too fast,

Figure 3. Modeled SOC decomposition dynamics at the larch plantation in northeastern China (CN-Lar). Note that this is a trenched plot; therefore, SOC is depleting.
(a–d) Outputs from the dormancy model; (e, g, h) outputs from the no dormancy model. (f) The measured soil temperature and volumetric moisture content at
the site. Both models reproduced observed CO2, but there is less oscillation in microbial biomass in the dormancy model (Figures 3b and 3g), and the active
fraction of microbial biomass closely tracked soil moisture conditions (Figures 3b and 3f). Legend in the figure denotes the following: Ba—active microbial biomass;
Bd—dormancy microbial biomass; r—active portion of microbial biomass; MIC—total microbial biomass in the no dormancy model; ENZ—enzyme carbon.
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i.e., substrate saturation; equation (1)). This also suggests the high sensitivity of the half-saturation constant
to SOC in the Michaelis-Menten formulation.

3.3. Spatial Extrapolation
3.3.1. Spatial Distribution of Soil RH and Microbial Biomass
The two models both simulated soil RH ranging between 300 and 1000 g Cm�2 yr�1. The spatial pattern of
the soil RH of the dormancy and no dormancy models differed in large areas of northeastern U.S. and in
southern China, with the no dormancy model simulating about 30% higher respiration than that of the dor-
mancy model (Figures 5a and 5b). The soil RH of other regions was generally comparable between the two
models. The total soil RH of all temperate forests from the dormancy model amounted to 7.28 Pg C yr�1

and 8.83 PgC yr�1 from the no dormancy model. While there was no significant difference in the simulated
spatial soil RH between the models, the MIC/SOC ratio showed distinct patterns in both magnitude and
spatial distribution of the two models (Figures 5c and 5d). Here the MIC represented the total microbial
biomass including both active and dormant microorganisms for the dormancy model. The no dormancy
model overall simulated about two times higher MIC/SOC ratio for temperate forests, especially in northern
U.S., southern Europe, and northeastern China, than the dormancy model. In the no dormancy model, the
MIC/SOC ratio can reach about 4% (Figure 5d), whereas in the dormancy model the ratio ranged from
0.5% to 2% (Figure 5c). Grid cell-based spatial correlation analysis showed that in both models, soil RH was
negatively affected by bulk density and particle density (Table 4, ρ≈ 0.25, p< 0.001) but had a significant
correlation with soil C:N ratio (ρ≈ 0.3, p< 0.001) and especially organic matter content (ρ≈ 0.5, p< 0.001).
In particular, our simulated spatial soil RH of temperate forests was high at the Great Lakes regions in the
U.S. where SOC content was also reported to be high from the GSDE data set (Figures 5a and 5b). Soil tem-
perature and moisture also had significant positive effects on soil RH (ρ≈ 0.3 and �0.1, respectively,
p< 0.001) but were not as strong as the SOC.

Figure 4. Boxplot of parameter posterior distribution that are obtained after ensemble inverse modeling for the dormancy model at all six sites. DB indicates
deciduous broadleaf forest; EN indicates evergreen needleleaf forest. More details on the parameter description in the figure refer to Table 1.
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3.3.2. Spatial Pattern of Microbial Dormancy and Its Controlling Factors
The annual active portion of microbial biomass ranged from 2% to 20% across temperate forests (Figures 6a
and 6b). The spatial distribution of the active fraction of microbial biomass was relatively the same across
seasons. The seasonal active portion of microbial biomass in summer was generally higher than in winter
for large areas of northern U.S. and northeastern China, whereas southern U.S., Europe, and southern

Figure 5. Simulated spatial pattern of (a) soil heterotrophic respiration (RH) and (b) the MIC/SOC (total microbial biomass carbon to soil organic carbon) ratio of the
two models.

Table 4. Pearson Correlation Coefficient by Grid Cell Between Active Portion of Microbial Biomass (r) and Soil Heterotrophic Respiration (RH) and Soil Properties,
Soil Temperature, and Soil Volumetric Moisture Content for Temperate Forest

Soil Physical and Environmental Factors

Dormancy Model No DormancyModel

r (Summer) r (Winter) r (Annual Mean) RH RH

Bulk Density (g cm�3) - - - �0.17*** �0.25***
Particle Density (g cm�3) - - - �0.26*** �0.39***
Organic C Content (mg cm�2) in the Top 30 cm 0.03 0.04 0.03 0.40*** 0.62***
Soil C:N Ratio �0.43*** �0.58*** �0.53*** �0.42*** �0.21***
Litterfall C Input (g Cm�2 yr�1) - - - 0.08** 0.07**
Annual Mean Soil Temperature at 10 cm �0.19*** �0.28*** �0.14*** 0.33*** 0.29***
Annual Mean Soil Volumetric Moisture at 10 cm 0.10*** 0.12*** 0.06** �0.11** �0.12***
Soil Volumetric Moisture in Summer 0.06* 0.07* 0.09** -
Soil Volumetric Moisture in Winter 0.08 0.09** 0.05 - -

r Seasonal Amplitude (rsummer� rwinter)
Seasonal Amplitude of Soil Temperature (Summer-Winter) 0.18*** 0.03 - -
Seasonal Amplitude of Soil Volumetric Moisture (Summer-Winter) 0.22*** �0.13** - -

*Significant at p< 0.1;
**Significant at p< 0.05;
***Significant at p< 0.001.
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China featured a relatively constant active fraction across seasons (Figures 6a and 6b). Grid cell-based spatial
correlation analysis showed that the soil C:N ratio was a major controlling factor on dormancy (Table 4,
ρ=�0.43 in summer and �0.58 in winter, respectively, p< 0.001), indicating that higher nutrient availability
(lower C:N ratio) yields lower dormancy proportion (higher active fraction). Annual temperature andmoisture
were weak controls on the spatial dormancy pattern (ρ≈ 0.15) except that the winter active fraction had a

Figure 6. The spatial pattern of the active portion of microbial biomass in (a) summer and (b) winter and (c) the C:N ratio of soil organic matter of the temperate forest
latitudinal band (25°N–50°N).

Figure 7. Temporal correlation (Pearson correlation coefficient) at each grid cell between the (a) active portion of microbial biomass and soil volumetric moisture
content, (b) active portion of microbial biomass and soil temperature, and (c) soil temperature and moisture content.
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slightly stronger negative correlation with annual temperature (ρ=�0.28, p< 0.001). However, temperature
and moisture had very strong local controls on dormancy on temporal scales, with moisture having mostly
strong positive temporal correlations with the active fraction (ρ> 0.6, Figure 7a), as moisture was formulated
to directly control substrate availability. Temperature showed negative temporal correlation with the active
fraction (ρ<�0.5, Figure 7b), primarily due to the negative covariation between temperature and moisture
in the CCSM4 results (Figure 7c). It is worth noting here that, although annual temperature and moisture had
weak controls on spatial patterns of active fraction, the seasonal amplitude of soil temperature and moisture
generally exhibited higher correlations than that of the active fraction (ρ> 0.18 and p< 0.001, Table 4),
suggesting high sensitivity of active-dormant transition to seasonal changes in moisture and temperature
levels at large spatial scales.

4. Discussion
4.1. Model Performance and Limitations

A synthesis by Bond-Lamberty et al. [2004] documented soil RH from temperate forests to range from 300
to 800 g Cm�2 yr�1. We calculated the regional total soil RH based on the reported mean value of
600 g Cm�2 yr�1 and the land cover map used in this study, resulting in a total soil RH of around
7.11PgCyr�1. The dormancy model produced closer estimates to this synthetic estimate with 7.5±2.4PgCyr�1,
whereas the no dormancy model may overestimate soil RH with 8.8 ± 3.5 Pg C yr�1. Despite the comparable
results between our simulated soil RH and synthesized observations, our simplified modeling framework
lacked explicit consideration of other nutrient cycles. Although we used soil C:N ratio to indicate substrate
quality and its effects on microbial assimilation as a representative index, the coupled dynamics of kinetics
and stoichiometric constraints on microbial physiology, which also pose key controls on decomposition
dynamics, are not incorporated [Sinsabaugh et al., 2013]. While the simplified framework may be sufficient
to serve the purpose of this study, a more complex modeling scheme that accounts for the stoichiometry
of elements such as phosphorus should be able to reveal more biogeochemical controls which can then
be benchmarked with observations to improve model performance.

Another caveat of our approach is that the model only simulates soils of the top 30 cm due to lack of micro-
bial information below this depth. In the Chinese trenched plots, models simulated 20% drop in SOC over the
course of 5 years. Although there was no C input at these sites, the SOC loss might still be overestimated
because we attribute soil heterotrophic respiration from soils below 30 cm to that of the surface soil. In future
model development, a depth-resolvedmodeling scheme and respirationmeasurements from the soil vertical
profile would improve model realism (see discussion below).

4.2. Implications for Informing Experimental Needs

Rainfall-induced activation of dormant biomass can generate soil CO2 pulses comparable in magnitude to the
annual net C exchange of many terrestrial ecosystems (e.g., Mediterranean) [Placella et al., 2012; Xu et al.,
2004]. Particularly, drying-rewetting events can exert stress on soil microbial communities and cause a
decrease in soil basal respiration while total biomass increases [Fierer and Schimel, 2002]. In addition, changes
in soil temperature andmoisture conditions can induce responses inmicrobial basal respiration that were not
explained by changes in total microbial biomass but rather changes in the physiology of soil microbial com-
munities such as resuscitation of physiologically clusteredmicrobial groups [Hagerty et al., 2014; Placella et al.,
2012]. In contrast to seasonal variation in soil RH driven by changes in temperature and moisture in a variety
of ecosystems [Suseela and Dukes, 2013], total microbial biomass is generally unaffected by seasonality
[Blume et al., 2002]. All of these indicate that soil respiration responses to environmental conditions are more
closely associated with the active portion of microbial biomass than total microbial biomass. Thus, the no
dormancy model that does not distinguish microbial biomass with different physiological states may not
correctly represent the microbe-soil interactions. Similarly, using total biomass as an important metric in both
experiments and modeling may also hinder effective data-model integration.

Our modeling results demonstrate that the ecosystem-level controls on dormancy at large spatial scales are
different from that at local transient scales. This suggests that both site-level and spatial data should be used
for model validation, because it is usually easier for models to reproduce site-level, short-term observations
with data assimilation techniques, but much more difficult to capture spatial patterns [Todd-Brown et al.,
2013] and long-term dynamics [He et al., 2014a]. In this study, we successfully reproduced soil RH at six
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temperature forest sites, but our extrapolated soil RH revealed the potential issues with applying Michaelis-
Menten kinetics on ecosystem scales and yielded high soil RH in the northeastern U.S. due to the high SOC
content in that region. Such insufficiency in the model structure may not be disclosed at site-level examina-
tion. Therefore, spatially gridded comprehensive soil C and microbial physiology metrics would be tremen-
dously helpful in model validation and assessment. For example, the contrasting controls of bulk density,
particle density, and organic C content on simulated soil RH likely reflects covariation among these variables,
because soil C concentration decreased with increasing particle density, implying less soil organic matter
accumulation [Sollins et al., 2009]. Our simulated soil RH is then able to reflect the spatial controls of soil
physical properties on decomposition.

Uncertainty in driving data for decomposition models may also be substantial, and experimental measure-
ments on large spatial scales would also be helpful. For example, the CCSM4 simulation we used cannot
reproduce the surface frozen soil in northeastern China that we observed in the site-level measurements
(Figure 3f), which potentially could introduce inaccuracies in model results. Note that in southern China
broadleaf temperate forests do not show high temporal correlations of dormancy with soil moisture; this
is likely because soil moisture is relatively constant throughout the year [Tang et al., 2006]; thus, soil moisture
may not be the primary limiting factor on active fraction of microbial biomass in that region. More experi-
mental data in that region should help benchmark both simulated soil moisture and temperature.

4.3. Implications for Informing Future Model Development

The high correlation between soil RH and the organic C content in the top 30 cm (Table 4) in our analysis
may be attributable to the Michaelis-Menten kinetics we used in the SOC enzymatic decay process
(equation (1)), where SOC content directly controls saturation level of the organic matter. Michaelis-
Menten kinetics has an implicit assumption that all substrates are accessible to enzymes under a homoge-
neous spatial distribution [Michaelis and Menten, 1913]. The soil solution-based measurements to which
Michaelis-Menten kinetics usually apply are a good example that demonstrates the homogeneity require-
ment. In this way, Michaelis-Menten kinetics has a spatial limitation on relatively local scales (where
homogeneous assumption holds). Nevertheless, the depth dependency of soil moisture, root inputs (e.g., root
exudates and dead fine roots), and particle size in soils defies the underlying assumptions to Michaelis-
Menten formulations.

Michaelis-Menten formulation also is derived under the assumption that enzymatic kinetics can cause a
significant change in substrate levels [Michaelis and Menten, 1913], which is unrealistic for several soil pro-
cesses influencing decomposition. For example, soil mineral-organic matter interaction and the occlusion
of SOC by soil aggregates can form physical barriers to microbial extracellular hydrolysis of SOC [Ayati,
2012]. These limitations may explain the underperformance of both models, in particular the no dormancy
model, at the US-MOz site, which has the lowest SOC content among the six sites. Although this issue is less
notable in the dormancy model, the spatial distribution of high soil RH in high SOC conditions still suggests
some issues of using Michaelis-Menten kinetics when treating a large SOC as homogeneous (Table 4). We
propose that a better representation of soil vertical heterogeneity [e.g., Koven et al., 2013] would be beneficial
to using Michaelis-Menten kinetics in microbial-based decomposition models. Large SOC content likely
induces mismatch of the temporal scale of SOC change with that of microbial activity. To reconcile the
homogeneity assumption of Michaelis-Menten dynamics and the localization of actual SOC enzymatic decay,
vertical heterogeneity can be implemented using multilayer soil model structure or depth-resolved SOC
profile, thus ensuring a certain degree of homogeneity of SOC and enzyme distribution at each depth incre-
ment [He et al., 2014b]. Stabilization of organic matter by interaction with poorly crystalline minerals is also a
key mechanismmissing in current models [Ayati, 2012] and should be incorporated in future model develop-
ment. In our model, the total SOC is used as substrate for enzymatic decay, when actually the active fraction
of the organic matter should be used. In addition, it will be relatively easy to incorporate the moisture effects
on enzyme activity into our models.

In both dormancy and nondormancy models, soil temperature and moisture exhibited similar levels of
controls on soil RH (Table 4). This is likely attributed to how soil moisture controls substrate availability within
the model. As current first-order formulations in decomposition models only yield marginal effects of soil
moisture [Todd-Brown et al., 2013], formulations with direct coupling betweenmoisture andmicrobial activity
should improve decomposition models.
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5. Conclusion

Microbial life history traits such as dormancy play an important role in biogeochemical cycles. It has been widely
observed that the active portion of microbial biomass, rather than the total biomass, explains the changes in
microbial basal respiration rates. This study examines whether including dormancy in microbial-based soil
decomposition model can improve the estimates of SOC dynamics and other microbial-related metrics. Our
results showed that, although both dormancy and no dormancy models can capture the field-observed soil
RH, the no dormancy model exhibited larger seasonal oscillation and overestimated microbial biomass. Our
regional modeling results also indicated that models with dormancy were able to produce more realistic mag-
nitude ofmicrobial biomass and soil RH at both site-level and large spatial scales. Last, Michaelis-Menten kinetics
may not be appropriate for models that do not vertically resolve decomposition dynamics in the soil profile. To
be able to implement vertically resolvedmicrobial processes, measurements of corresponding parameters from
different ecosystems are imperative. This study also identified scale-dependent biogeochemical controls on
microbial dynamics. Soil nutrient availability and quality, rather than seasonal variation of soil temperature
and moisture, are the dominant control of spatial patterns of microbial dynamics. Overall, our findings suggest
that future microbial model development should consider the representation of microbial dormancy, which
will both improve the realism of microbial-based decomposition models and enhance the integration of soil
experiments and mechanistically based modeling.
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