Constraining terrestrial ecosystem CO$_2$ fluxes by integrating models of biogeochemistry and atmospheric transport and data of surface carbon fluxes and atmospheric CO$_2$ concentrations

Q. Zhu$^{1,2, *}$, Q. Zhuang1,2,3, D. Henze4, K. Bowman5,6, M. Chen7, Y. Liu1,2, Y. He1,2, H. Matsueda8, T. Machida9, Y. Sawa8, and W. Oechel10

1Purdue Climate Change Research Center, Purdue University, West Lafayette, Indiana, USA
2Department of Earth, Atmospheric, and Planetary Sciences, Purdue University, West Lafayette, Indiana, USA
3Department of Agronomy, Purdue University, West Lafayette, Indiana, USA
4Department of Mechanical Engineering, University of Colorado, Boulder, Colorado, USA
5Jet Propulsion Laboratory, California Institute of Technology, Pasadena, California, USA
Constraining terrestrial ecosystem CO$_2$ fluxes

Q. Zhu et al.

Received: 19 June 2014 – Accepted: 15 August 2014 – Published: 3 September 2014

Correspondence to: Q. Zhu (qzhu@lbl.gov)

Published by Copernicus Publications on behalf of the European Geosciences Union.
Abstract

Regional net carbon fluxes of terrestrial ecosystems could be estimated with either biogeochemistry models by assimilating surface carbon flux measurements or atmospheric CO$_2$ inversions by assimilating observations of atmospheric CO$_2$ concentrations. Here we combine the ecosystem biogeochemistry modeling and atmospheric CO$_2$ inverse modeling to investigate the magnitude and spatial distribution of the terrestrial ecosystem CO$_2$ sources and sinks. First, we constrain a terrestrial ecosystem model (TEM) at site level by assimilating the observed net ecosystem production (NEP) for various plant functional types. We find that the uncertainties of model parameters are reduced up to 90% and model predictability is greatly improved for all the plant functional types (coefficients of determination are enhanced up to 0.73). We then extrapolate the model to a global scale at a 0.5° × 0.5° resolution to estimate the large-scale terrestrial ecosystem CO$_2$ fluxes, which serve as prior for atmospheric CO$_2$ inversion. Second, we constrain the large-scale terrestrial CO$_2$ fluxes by assimilating the GLOBALVIEW-CO2 and mid-tropospheric CO$_2$ retrievals from the Atmospheric Infrared Sounder (AIRS) into an atmospheric transport model (GEOS-Chem). The transport inversion estimates that: (1) the annual terrestrial ecosystem carbon sink in 2003 is -2.47 Pg C yr$^{-1}$, which agrees reasonably well with the most recent inter-comparison studies of CO$_2$ inversions (-2.82 Pg C yr$^{-1}$); (2) North America temperate, Europe and Eurasia temperate regions act as major terrestrial carbon sinks; and (3) The posterior transport model is able to reasonably reproduce the atmospheric CO$_2$ concentrations, which are validated against Comprehensive Observation Network for TRace gases by AlrLiner (CONTRAIL) CO$_2$ concentration data. This study indicates that biogeochemistry modeling or atmospheric transport and inverse modeling alone might not be able to well quantify regional terrestrial carbon fluxes. However, combining the two modeling approaches and assimilating data of surface carbon flux as well as atmospheric CO$_2$ mixing ratios might significantly improve the quantification of terrestrial carbon fluxes.
1 Introduction

Atmospheric carbon dioxide (CO$_2$) concentrations have greatly increased since the pre-industrial era, which is primarily due to increasing anthropogenic emissions of CO$_2$ (Marland et al., 2003) and human-induced land-use and land-cover changes (Houghton, 2003; Kaul et al., 2009). Observations reveal that the rapid increase of atmospheric CO$_2$ modified the energy balance of the earth system through a positive radiative forcing effect and warmed up the climate system (Forster et al., 2007). The warming effect is mitigated through removing the atmospheric CO$_2$ by oceans (Jacobson et al., 2007a; Sabine et al., 2004) and terrestrial ecosystems (Saeki et al., 2013; Yu et al., 2013). Recent studies estimate that about 8.3 ± 0.4 Pg C yr$^{-1}$ (1 Pg = 1015 g) is released by fossil-fuels burning and cement production (E_{FF}) (Le Quéré et al., 2013) during the recent decade. The oceans take up about 2.5 ± 0.5 Pg C yr$^{-1}$, which accounts for 30% of the anthropogenic E_{FF} emissions (Takahashi et al., 2009; Wanninkhof et al., 2012); the terrestrial ecosystems absorb about 2.6 ± 0.8 Pg C yr$^{-1}$, which accounts for 31% of the E_{FF} emissions (Sitch et al., 2013). Although the oceanic reservoir and the terrestrial biosphere absorb a roughly equal amount of anthropogenic emissions of CO$_2$ on a decadal scale, the oceanic carbon flux is relatively stable in terms of seasonal variability, inter-annual trend and spatial distribution (Le Quéré et al., 2009; Takahashi et al., 2009) and plays a minor role in controlling the temporal and spatial variations of atmospheric CO$_2$ concentrations. In contrast, the terrestrial ecosystem carbon budgets have a much larger temporal variability and spatial heterogeneity, due to the complex non-linear responses of ecosystem carbon dynamics to the changing climate (Jung et al., 2011; Medvigy et al., 2010; Sitch et al., 2008, 2013). The variations of atmospheric CO$_2$ concentrations are dominated by the magnitude and distribution of terrestrial ecosystem carbon uptake rather than the oceanic uptake. Therefore, it is fundamentally important to quantitatively understand the current terrestrial ecosystem carbon budgets and their inter-annual trend, seasonal variation and spatial distribution, in order to better project future levels of atmospheric concentrations.
Regional and global terrestrial ecosystem carbon budgets have been extensively studied and revisited over the past three decades mainly through two approaches: (1) process-based ecosystem biogeochemistry modeling (Z. Chen et al., 2013; Melillo et al., 1993; Sitch et al., 2013) and (2) atmospheric CO$_2$ inverse modeling (Gurney et al., 2002; Kaminski and Heimann, 2001; Peters et al., 2007; Peylin et al., 2013; Tans et al., 1989). The biogeochemistry modeling, so called bottom-up approach, simulates the ecosystem carbon dynamics including photosynthesis, plant respiration and soil respiration (Knorr and Heimann, 2001; Luo et al., 2003; Sierra et al., 2007; Sitch et al., 2008; Zhuang et al., 2003). The net CO$_2$ budget or net ecosystem production (NEP) (Randerson et al., 2002) is calculated as the difference between photosynthesis and ecosystem respirations (plant respiration plus soil respiration). Atmospheric CO$_2$ inversion (top-down approach) is another useful tool to investigating large-scale carbon budgets. This approach is based on the observed atmospheric CO$_2$ concentration data and transport models to infer the magnitude and spatial distribution of surface carbon sources and sinks (Chevallier and O’Dell, 2013; Gurney et al., 2002; Peters et al., 2007). To date, it is still challenging to quantify the regional patterns of terrestrial carbon exchanges using this approach (Janssens et al., 2005; Peylin et al., 2013; Piao et al., 2009; Sierra et al., 2007). Recent atmospheric CO$_2$ inversion studies show considerably diverse results. For example, northern terrestrial ecosystems are estimated as a carbon sink ranging from 0.5 to 4 Pg C yr$^{-1}$ while tropical terrestrial ecosystems act as a carbon sink of 1 Pg C yr$^{-1}$ or a carbon source up to 4 Pg C yr$^{-1}$ (Gurney et al., 2004; Jacobson et al., 2007b; Peylin et al., 2002, 2013; Rödenbeck et al., 2003; Stephens et al., 2007).

One of the most significant limitations of CO$_2$ inversion modeling is that there is no sufficient CO$_2$ concentration data (Dargaville et al., 2006). For example, in the Atmospheric Tracer Transport Model Intercomparison Project 3 (TransCom 3) (Gurney et al., 2008), large areas over lands and tropics were not well observed by its CO$_2$ network. Thus, the uncertainties of estimated carbon fluxes were generally larger in these areas than over the oceans (Gurney et al., 2002). One possible solution is to use alterna-
Atmospheric CO₂ inversions are also highly sensitive to land surface prior fluxes (Dargaville et al., 2006; Peylin et al., 2013). Realistic prior terrestrial ecosystem flux data (magnitude and uncertainty) are critical to resolving the ill-posed problem of CO₂ inversions (Kaminski and Heimann, 2001), ensure that the posterior estimations are biogeochemically reasonable, and impose a strong constraint over the regions where observations are sparse or highly uncertain (Gurney et al., 2008). Biogeochemistry models have proven to be useful tools to generate the prior carbon flux for the CO₂ inversion studies. For example, Nassar et al. (2011) used re-gridded 1° by 1° resolution annual balanced NEP (annual flux 0 Pg C) simulated by Carnegie Ames Stanford Approach (CASA) and an annual terrestrial exchange climatology (annual flux −5.29 Pg C). However, such prior carbon flux does not consider year-to-year variation. In reality, the terrestrial ecosystem carbon dynamics are highly sensitive to the environmental conditions of temperature, precipitation and radiation. The interannual variability of terrestrial ecosystem carbon flux could be as large as their annual mean (Dargaville et al., 2006). FLUXNET network (Baldocchi, 2008; Baldocchi et al., 2001) observed carbon flux has also been widely used to improve the estimations of prior flux for CO₂ inversions (Chevallier et al., 2012; Knorr and Kattge, 2005). Although FLUXNET in situ observations only provide knowledge within a footprint up to a few kilometers (Baldocchi, 2003; Schmid, 1994), the local information could be scaled up to regions using biogeochemistry models. All in all, combining FLUXNET in situ observations as well as biogeochemistry model is an effective way to generate reliable prior carbon flux for the CO₂ inversion.
In this study, we aim to quantify terrestrial ecosystem carbon budget at sub-continental scales with a two-phase framework by combining TEM bottom-up biogeochemistry modeling (Zhu and Zhuang, 2013a) and GEOS-Chem top-down CO$_2$ inversion (Henze et al., 2007). Our first objective focuses on obtaining reliable terrestrial ecosystem carbon flux estimates, which will serve as a prior for the GEOS-Chem inversion, by assimilating the AmeriFlux data into a biogeochemistry model TEM. Our second objective attempts to assimilate the GLOBALVIEW-CO2 surface CO$_2$ concentrations (Globalview-CO2, 2013) and mid-troposphere CO$_2$ concentrations retrieved from Atmospheric Infrared Sounder (AIRS) (Chahine et al., 2008; Chevallier et al., 2009; Maddy et al., 2008; Tiwari et al., 2006) into GEOS-Chem to further constrain the regional terrestrial ecosystem carbon budgets.

2 Methodology

2.1 Overview

In this study, we combine process-based biogeochemistry modeling (bottom-up approach) and atmospheric CO$_2$ inverse modeling (top-down approach) to quantify the terrestrial ecosystem carbon budgets (Fig. 1). We estimate the carbon flux with a two-phase framework, into which multiple sources of observational data are assimilated. In phase one, we assimilate the AmeriFlux network observed NEP data into the terrestrial ecosystem model (TEM) (Zhuang et al., 2010, 2003) to constrain the model parameters for eight representative plant functional types (PFTs) with the adjoint method (Zhu and Zhuang, 2013b, 2014). The constrained model is employed to simulate the global terrestrial ecosystem carbon budgets at a 0.5° by 0.5° resolution. The carbon flux is integrated to 4° by 5° (latitude by longitude) resolution and serves as the prior constraint for the transport inversion. In phase two, the GLOBALVIEW-CO2 (Globalview-CO2, 2013) surface CO$_2$ concentrations and AIRS mid-troposphere CO$_2$ retrievals (Chahine et al., 2008; Maddy et al., 2008) are assimilated into an atmospheric transport model.
(GEOS-Chem) (Nassar et al., 2010) with its adjoint version (Henze et al., 2007) to further constrain our prior estimations of terrestrial CO$_2$ fluxes. The posterior terrestrial ecosystem CO$_2$ budgets constrained by AmeriFlux NEP data and GLOBALVIEW-CO2 and AIRS CO$_2$ data are finally evaluated at 11 land regions defined by the TransCom 3 standard (Gurney et al., 2008). The posterior CO$_2$ concentrations are evaluated at several representative inland GLOBALVIEW-CO2 sites as well as CONTRAIL airplane samplings locations between Japan and Australia.

2.2 Adjoint-TEM and AmeriFlux NEP

The Terrestrial Ecosystem Model (TEM) is a biogeochemistry model that simulates the ecosystem carbon and nitrogen fluxes and pools (McGuire et al., 1992; Zhuang et al., 2010, 2003) (Please see Appendix A for more details of TEM). The Adjoint-TEM is a data assimilation version of TEM based on the adjoint method (Giering and Kaminski, 1998). It is able to assimilate in situ AmeriFlux NEP data (Zhu and Zhuang, 2014) and the MODIS remote sensing GPP product (Zhu and Zhuang, 2013a). Observational data are fused into TEM through minimizing a pre-defined cost function (J), which comprises a prior part (J_{prior}) and an observational part (J_{obs}).

$$J = J_{\text{prior}} + J_{\text{obs}}$$

$$J_{\text{prior}} = (p - p^0)^T S^{-1} (p - p^0)$$

$$J_{\text{obs}} = \sum_{i=1}^{N} (f(x)_i - f^0_i)^T R_i^{-1} (f(x)_i - f^0_i)$$

where p and p^0 are vectors of the updated and prior parameters, respectively. Fifteen model parameters associated with the processes of interest (Table 1) are constrained in this study. S^{-1} is the inverse of prior parameter uncertainty. We assume: (1) there are no correlations between parameters (off-diagonal elements of S are zeros); (2) variances of prior parameters (diagonal elements of S) are 40% of the difference be-
Constraining terrestrial ecosystem CO₂ fluxes

Q. Zhu et al.

The cost function penalizes misfit between modeled and observed NEP (Eq. 3) and ensures the updated model parameters are biogeochemically reasonable according to our prior knowledge (Eq. 2). The adjoint-TEM data assimilation is a gradient-based optimization approach. The role of the adjoint version of TEM is to calculate the first order derivative of the cost function with respect to model parameters ($\frac{\partial J}{\partial p}$). A quasi-Newton method Broyden–Fletcher–Goldfarb–Shanno (BFGS) (Broyden, 1970) is employed to minimize the cost function and optimize model parameters. The posterior parameter uncertainty is calculated using Eq. (4) with linearity approximation at the minimum of the cost function (Kaminski et al., 2002; Kuppel et al., 2012).

$$R_{\text{post}} = \left(\sum_{i=1}^{N} H_i^T R_i^{-1} H_i + S^{-1} \right)^{-1}$$ (4)

where i starts from 1 to N, covering the entire assimilation time window. R_i and S are observation error and parameter prior error covariance matrix, respectively. H_i is the Jacobian matrix at the minimum of the cost function J.

The AmeriFlux network samples high-frequency atmospheric turbulence that transports CO₂ across the canopy–atmosphere interface. The net CO₂ exchange is determined by the covariance between the fluctuation of vertical wind velocity and the change of CO₂ mixing ratio using eddy covariance technique (Baldocchi, 2003). The scale (footprint) of AmeriFlux NEP ranges from a few hundred meters to several kilometers (Schmid, 1994), depending on the instrument height, the steadiness of environmental conditions and the flatness of the terrain. The temporal resolution of AmeriFlux NEP data varies from hourly to monthly. We use Level-4 monthly gap-filled NEP between their upper and lower bounds (Kuppel et al., 2012). $f(x)_i$ and $f(x)^O_i$ are simulated and observed NEP, respectively, at time step i. $i \in [1, N]$ covers the assimilation time window and N is the total amount of NEP data that have been assimilated. R_i^{-1} is the inverse of AmeriFlux NEP observational error, which is assumed to be 20% of the observed NEP (Raupach et al., 2005).
For each PFT, the optimized model is extrapolated to another AmeriFlux site (not used in the assimilation) with the same PFT to evaluate the constrained model. After the cross-site validation, we extrapolate the calibrated TEM to simulate the regional carbon budget. The associated uncertainty of the regional carbon flux is estimated with ensemble model simulations: (1) We sample parameters from the posterior distributions of model parameters (assume to follow the Gaussian distribution with mean of optimal parameter value and variance of posterior uncertainty), which are estimated by the adjoint-TEM framework; (2) For each ensemble, we run forward TEM simulation and obtain a NEP map at 0.5° by 0.5° resolution; (3) We integrate the NEP results to 4° by 5° (latitude by longitude) resolution grids, which is consistent with our GEOS-Chem simulations; and (4) By analyzing the results of TEM modeled NEP at 4° by 5° resolution, we calculate the statistical mean (μ) and variance σ² and use them as prior constraints in the GEOS-Chem CO₂ inversion.

2.3 GEOS-Chem CO₂ inversion

GEOS-Chem is a global 3-D atmospheric transport and chemistry model (Bey et al., 2001) that is driven by assimilated meteorological data from the Goddard Earth Observing System (GEOS) of the NASA Global Modeling Assimilation Office (GMAO). The GEOS-Chem CO₂ simulation was first developed by Suntharalingam et al. (2004) and further improved by Nassar et al. (2010) in terms of CO₂ emissions inventories and chemical production of CO₂ sources. GEOS-Chem simulates the time-space evolution of atmospheric CO₂ mixing ratios driven by surface CO₂ fluxes of fossil fuel and cement manufacture emissions (Andres et al., 2011), biomass burning emission (van der Werf et al., 2006), bio-fuel burning emission (Yevich and Logan, 2003), shipping and aviation emissions (Corbett and Koehler, 2003; Friedl, 1997), chemical sources from...
oxidation of other carbon species (e.g., CO, CH₄) (Nassar et al., 2010), ocean CO₂ fluxes (Takahashi et al., 2009) and terrestrial ecosystem CO₂ flux (TEM modeled NEP in this study). We use GEOS-4 driving dataset (Bloom et al., 2005) to run GEOS-Chem at a horizontal resolution of 4° by 5° with a vertical resolution of 30 layers.

The adjoint of GEOS-Chem was originally developed by Henze et al. (2007) focusing on aerosol chemistry and thermodynamics. It was further updated and applied to conduct sensitivity analyses of ozone (O₃) (Singh et al., 2011; Zhang et al., 2009), assimilate atmospheric trace gases such as carbon monoxide (CO) (Kopacz et al., 2006) and methane (CH₄) (Wecht et al., 2012). Here, we apply GEOS-Chem adjoint (version v34) to assimilate atmospheric CO₂ concentration data and inverse terrestrial ecosystem carbon fluxes. The adjoint GEOS-Chem data assimilation is a four-dimensional variational (4-D-Var) framework that assimilates the whole CO₂ dataset (over space and time) at once. A cost function that describes the time-space discrepancy between GEOS-Chem model simulated and observed CO₂ concentrations is defined as:

\[
J(x) = (x - x^0)^T S^{-1} (x - x^0) + \sum_{i=1}^{M} \sum_{j=1}^{N} (f(x)_{i,j} - f^0_{i,j})^T R_{i,j}^{-1} (f(x)_{i,j} - f^0_{i,j})
\]

where \(x\) and \(x^0\) are updated and prior control variables. Since we are interested in only the terrestrial ecosystem component of global CO₂ budgets, \(x\) denotes the updated terrestrial ecosystem carbon flux and \(x^0\) is our prior estimation of NEP from TEM (\(\mu\), estimated in Sect. 2.2). \(S^{-1}\) represents the uncertainty of our prior \(x^0\). To simplify the inverse modeling, we neglect the correlations between NEP at different locations. Therefore, the off-diagonal elements of \(S\) are zeros and the diagonal elements are derived from TEM ensemble simulations (\(\sigma^2\), estimated in Sect. 2.2). \(f(x)_{i,j}\) is an observation operator applied to ecosystem carbon flux \(x\), which results in a comparable quantity with the observations at time \(i\) space \(j\) (\(f^0_{i,j}\): in this case are the GLOBALVIEW-CO2 and AIRS CO₂). Only a subset of the GLOBALVIEW-CO2 network (Fig. 2) is selected for the surface flux inversion. Six representative inland sites are reserved for validation.
purpose (Table 3). R_{ij}^{-1} is the inverse of the data error, which is provided by the AIRS CO$_2$ and GLOBALVIEW-CO2 datasets.

The GEOS-Chem CO$_2$ inverse modeling is a numerical problem of minimizing $J(x)(x = \text{argmin}(J(x)))$. The optimization is implemented by the L-BFGS-B optimization routine (Byrd et al., 1995), which is a limited memory and bound constraint variant of classic BFGS method (Broyden, 1970). The GEOS-Chem adjoint efficiently calculates the gradient of the cost function with respect to terrestrial ecosystem carbon flux ($\nabla_x J$):

$$
\nabla_x J = S^{-1}(x - x^0) + \sum_{i=1}^{M} \sum_{j=1}^{N} \nabla_x f(x_{i,j})^T R_{i,j}^{-1}(f(x_{i,j}) - f^0)
$$

where $\nabla_x f(x_{i,j})$ represents the gradient of observation operator at time space location (i,j) with respect to surface ecosystem carbon fluxes. For more detailed information about calculating $\nabla_x J$ and the construction of the adjoint model, please refer to Henze et al. (2007).

The posterior error covariance matrix is estimated with the inverse of the Hessian (the second derivative of cost function with respect to surface ecosystem carbon fluxes):

$$
R_{\text{post}}^{-1} = \left(S^{-1} + \sum_{i=1}^{M} \sum_{j=1}^{N} \nabla_x f(x_{i,j})^T R_{i,j}^{-1} \nabla_x f(x_{i,j}) \right)^{-1}
$$

The inverse of the Hessian is approximated by employing the Davidon–Fletcher–Powell (DFP) algorithm, which had been implemented in GEOS-Chem inverse modeling framework (Deng et al., 2014).

In order to compare our results with previous work, the posterior terrestrial ecosystem carbon fluxes are aggregated and evaluated at 11 sub-continental regions based
on the TransCom 3 standard. We conduct two CO₂ inversions: (1) using CASA balanced biosphere carbon flux and an annual terrestrial exchange climatology (Nassar et al., 2010) as prior; (2) using TEM simulated NEP after assimilating the AmeriFlux observations as prior. Since CASA prior NEP does not provide uncertainties, thus we use the default choice of GEOS-Chem inverse modeling setup and assume the uncertainties to be 50%. The two inversions are evaluated against several GLOBALVIEW-CO2 sites that were not assimilated and CONTRIAL aircraft CO₂ observations.

2.4 CO₂ concentration data

GLOBALVIEW-CO2 is a data product of the Cooperative Atmospheric Data Integration Project. It is derived from a large number of atmospheric CO₂ concentration measurements with an attempt to resolve the temporal discontinuity and data sparseness (Fig. 2). It compiles CO₂ measurements from different institutions and selects qualified observations based on various baseline conditions (Brunke et al., 2004). The GLOBALVIEW-CO2 product is smoothed, interpolated and extrapolated with a gap-fill technique (Masarie and Tans, 1995). As a result, the CO₂ records in this data product are evenly incremented in time (8 day interval), which greatly facilitates carbon cycle research (D. Baker et al., 2006; Gloor et al., 2000).

In addition to the GLOBALVIEW-CO2 surface network, we also assimilate AIRS mid-troposphere CO₂ retrievals. The Atmospheric Infrared Sounder (AIRS) is an instrument onboard the Aqua satellite, which was launched in 2002 by NASA and is a part of the A-train (afternoon train) satellite constellation. AIRS is operating in a nadir view mode observing the up-welling radiance with a footprint of 13.5 km diameter on the earth surface. The instrument is in a sun-synchronous near-polar orbit with local equatorial crossing time at 1.30 a.m. and 1.30 p.m. (Aumann et al., 2003). The AIRS 2378 hyper-spectral infrared channels ranging from 3.7 µm to 15.4 µm have been widely used to retrieve atmospheric concentrations of ozone, methane, carbon monoxide and carbon dioxide (Chahine et al., 2005; Chevallier et al., 2009; McMillan et al., 2005; Monahan et al., 2007; Xiong et al., 2009) in the mid-to-upper troposphere.
AIRS’s ability to retrieve CO₂ is based on the principle that radiances observed in infrared bands (3.7 to 15.4 μm) are sensitive to both temperature and CO₂ concentrations (Chédin et al., 2003). The difficulty is to separate the effects of atmospheric CO₂ concentrations from temperature on the observed radiances. Ideally, if the temperature could be accurately estimated, then the difference between radiative transfer model predicted and AIRS observed radiances could be safely allocated to change of CO₂ concentrations. However, temperature and CO₂ retrievals are interdependent; the error in CO₂ background values could affect temperature retrieval, which in return also affects the CO₂ estimations. This problem is tackled by a minimization procedure that optimizes a prior prescribed CO₂ profile to match the modeled and observed radiances (Tiwari et al., 2006). The AIRS CO₂ retrievals have been extensively evaluated and compared with in situ observations such as NOAA ESRL/GMD aircraft measurements (Maddy et al., 2008), INTEX-NA campaign measurements (Chahine et al., 2008). The comparisons demonstrated that the accuracy of AIRS CO₂ is better than 2 parts per million (ppm).

The AIRS data used in this study is the mid-troposphere CO₂ Level 2 dataset version 5 (Susskind et al., 2011). It is a daily product covering the region mainly from 60° S to 90° N with peak sensitive at from 285 (tropic) to 425 hPa (polar). AIRS averaging kernels are calculated by sequentially perturbing the retrieval at each vertical AIRS defined layers (Olsen, 2009) to assist data assimilation studies. It measures how sensitive a CO₂ retrieval is to changes of CO₂ concentrations at different height. Applying AIRS averaging kernels to GEOS-Chem modeled atmospheric CO₂ (\(y_m\)), we will obtain CO₂ concentrations at AIRS retrieval grid (\(\hat{y}_m\)).

\[
\hat{y}_m = y_a + A(y_m - y_a)
\]

where \(y_a\) and \(A\) are AIRS priori and averaging kernel function, respectively.

Besides the six selected GLOBALVIEW-CO2 inland sites that are reserved for validation purpose (Table 3), we also evaluate our posterior CO₂ concentrations with Comprehensive Observation Network for TRace gases by AlrLiner (CONTRAIL) CO₂ datasets.
(Machida et al., 2011; Matsueda et al., 2008). The data used in this study are collected by Automatic Air Sampling Equipment (ASE), a flask sampling system installed on Japanese commercial airlines. High precision CO_2 concentrations are sampled at about 10 km altitude over the Pacific Ocean from Japan to Australia. The CONTRAIL CO_2 data in 2003 ranging from 7 January to 18 November contains 22 flights with 12 data points each flight that sampled at different locations. To conveniently compare with GEOS-Chem model outputs, the dataset is grouped into three latitude bins (30° N–10° N, 10° N–10° S, 10° S–30° S).

3 Results and discussion

3.1 Biogeochemical modeling of surface carbon flux

We first present the optimized (posterior) model parameters in terms of statistical mean and uncertainty. Then we compare the posterior parameters against our prior knowledge to investigate how much information we learn through assimilating the AmeriFlux NEP data. The prior-posterior parameters inter-comparisons are conducted at eight AmeriFlux sites with different plant functional types, including tundra, boreal forest, temperate coniferous forest, temperate deciduous forest, grassland, shrubland, tropical forest and xeric woodland. Next, we apply the posterior model to another eight AmeriFlux sites (Table 2), which have the same plant functional type with the parameterization sites, to confirm the effectiveness of model calibration. Then, the posterior model is extrapolated to simulate the global terrestrial ecosystem carbon budgets at a 0.5° by 0.5° resolution. Finally, we aggregate the modeled ecosystem carbon budgets according to: (1) eleven land regions defined by the TransCom 3 project and (2) basic plant functional types, in order to conveniently analyze and compare our estimations with previous work.
3.1.1 Model constrained with eddy covariance data

The AmeriFlux NEP measures the net carbon exchange over the canopy–atmosphere interface. It contains information of multiple ecosystem carbon processes: (1) carbon input of photosynthesis; (2) carbon outputs of plant and soil respirations. The nitrogen cycle interacts closely with carbon dynamics in the terrestrial ecosystems. Therefore, the observed net carbon flux also provides constraints on ecosystem nitrogen dynamics to some extent. Model parameters involved in this study are associated with different carbon or nitrogen processes (Table 1). Figure 3 depicts the prior model (grey box) and posterior model (red error bar) in terms of mean and uncertainty (standard deviation). The prior uncertainty is assumed to be 40% (Kuppel et al., 2012) of the parameter empirical range and the posterior uncertainty is calculated with a linear approximation at the minimum of the cost function.

In general, the AmeriFlux NEP provides more constraint in carbon processes than nitrogen processes (Fig. 3). A majority of nitrogen related parameters have large posterior uncertainties, regardless of the type of plant function. For example, although N_{FALL} (the mean of posterior proportion of vegetation nitrogen loss as litter) differs from its prior mean in some cases, its posterior uncertainty is mostly as high as its prior uncertainty. Within carbon processes, there is no strong evidence showing which particular carbon process (photosynthesis, plant respiration or soil respiration) gained more constraints from the AmeriFlux NEP data (Fig. 3). The extent of posterior model improvement in different carbon processes highly depended on which plant functional type we are dealing with. It further confirms that the AmeriFlux net CO$_2$ flux is not especially favorable for any particular carbon process. Previous studies have showed that, in principle, net CO$_2$ flux measurements are difficult to be used to distinguish information from plant or soil respiration or photosynthesis (Knorr and Kattge, 2005; Williams et al., 2009).

Specifically, at tundra and boreal forest sites (two boreal ecosystems), the carbon processes are constrained well, while nitrogen process related parameters are not im-
proved at all. It implies that the model requires additional nitrogen data to constrain the nitrogen dynamics. Another possible reason is that the model structure is potentially deficient in representing the nitrogen cycle of boreal and alpine ecosystems (Zhu and Zhuang, 2013c). Therefore, poorly constrained nitrogen dynamics may not necessarily be attributed to the lack of data. At temperate coniferous and deciduous sites (two temperate forest ecosystems), deciduous forest is relatively better constrained than coniferous forest in terms of carbon processes, especially, for the three photosynthesis parameters maximum photosynthesis rate \((C_{\text{MAX}}) \), half saturation constant for PAR \((K_I) \) and half saturation constant for CO\(_2\) \((K_C) \). The nitrogen parameters values are improved to some extent. For example, the posterior mean of maximum rate of N uptake \((N_{\text{MAX}}) \) is enhanced compared with its prior. However, the posterior uncertainties of the nitrogen parameters are not reduced much at both of the two temperate forest sites. At grass and shrub sites, the photosynthesis parameters of grass ecosystems are better constrained while the soil respiration and nitrogen processes are relatively less improved compared with shrub. The plant respiration parameters are both well constrained at the two sites. At tropical forest, it is interesting to find that the nitrogen processes are well improved except the \(N_{\text{FALL}} \). In contrary, at xeric woodland site the nitrogen processes are not improved at all. However carbon processes at this site are generally well improved, except a carbon related litterfall parameter \((C_{\text{FALL}}) \) and soil respiration Q10 module parameter \((R_{HQ10}) \). That is because at woodland site (Freeman Ranch Mesquite Juniper) the ecosystem processes are strongly limited by the environmental condition of precipitation (Litvak et al., 2010). Therefore, the observed carbon flux reflects the mechanistic response of carbon dynamics to the water cycle, rather than nitrogen cycle (Heinsch et al., 2004). We speculate that, by using independent nitrogen process associated data; the model could be further improved.

The posterior model is evaluated at independent AmeriFlux sites (Table 2) for each basic plant functional type. Figure 4 depicts the model-data comparison (4a for prior model; 4b for posterior model). We use the coefficient of determination (COD) to com-
Constraining terrestrial ecosystem CO₂ fluxes

Q. Zhu et al.

3.1.2 Global terrestrial ecosystem carbon budget

The posterior model is scaled up to simulate the global terrestrial ecosystem carbon budget (0.5° by 0.5°) and aggregated to eleven land regions according to the TransCom 3 standard (Gurney et al., 2008). Figure 5 shows the net ecosystem carbon of the eleven sub-continental regions in terms of mean and uncertainty. In 2003, the global terrestrial ecosystem is estimated as a carbon sink of -1.97 ± 1.0 Pg C (negative value means sink). Estimation around 2 Pg C yr$^{-1}$ seems to be robust indicated by previous studies (Houghton, 2007; Le Quéré et al., 2009; Sarmiento et al., 2010; Schimel et al., 2001). For example, Houghton (2007) estimates the terrestrial car-

$\text{COD} = 1 - \frac{\sum_i (y_i - f_i)^2}{\sum_i (y_i - \bar{y})^2}$

(9)

where y_i is the AmeriFlux NEP time series, f_i is model simulated NEP and \bar{y} is averaged NEP observations. COD (or named model efficiency) provides a criterion to quantitatively measure how well a model could replicate the observed time series (Medlyn et al., 2005). In general, COD approaching 1.0 indicates a better model.

The posterior model COD (Fig. 4b) is larger and closer to 1.0 compared with the prior COD (Fig. 4a), regardless of the types of plant function. It indicates that the model predictability is improved by assimilating the AmeriFlux NEP data. Therefore, we conclude that the adjoint based data assimilation framework was effective to improve model performance for various ecosystem types. Large prior-posterior COD differences are observed at forest sites, including boreal forest (COD improved from 0.21 to 0.89), temperate deciduous forest (0.00 to 0.54) and temperate coniferous forest (0.00 to 0.73). The smallest COD improvement is at Lost Creek shrub site (COD only enhanced from 0.26 to 0.33).
bon sink to be $-1.9 \pm 1.1 \text{ Pg C yr}^{-1}$ in the 1980s, $-2.6 \pm 1.1 \text{ Pg C yr}^{-1}$ in the 1990s and $-2.3 \pm 1.1 \text{ Pg C yr}^{-1}$ during 2000–2005. The largest terrestrial carbon sink is in North American temperate region ($-0.82 \pm 0.32 \text{ Pg C}$). Previous work in 2003 estimates this region as $-0.45 \pm 0.26 \text{ Pg C yr}^{-1}$ carbon sink (Pacala et al., 2007), which is lower than our estimation. North American boreal region is also a carbon sink of $-0.119 \pm 0.36 \text{ Pg C yr}^{-1}$, which is close to $-0.08 \text{ Pg C yr}^{-1}$ carbon sink in Canada in 2003 estimated by Pacala et al. (2007). However, they do not include the carbon budget in Alaska. Taking account of a possible carbon sink around $-0.02 \text{ Pg C yr}^{-1}$ in Alaska (He et al., 2013), our estimation in North American boreal region is generally consistent with previous estimations. Adding the North America temperate and boreal carbon budgets together, the North American continent accounts for 50 % of the global terrestrial carbon sink.

The second largest carbon sink is in Eurasian temperate region, it absorbs about $-0.32 \pm 0.30 \text{ Pg C yr}^{-1}$. The Eurasian boreal region is a weak carbon sink of $-0.07 \pm 0.49 \text{ Pg C yr}^{-1}$. Inventory-based model estimates Eurasian temperate and boreal forests as a carbon sink of $-0.3 \pm 0.1 \text{ Pg C yr}^{-1}$ (Goodale et al., 2002). However, Sarmiento et al. (2010) updates the carbon budget to be $-1.0 \pm 0.50 \text{ Pg C yr}^{-1}$ for this region. Although it is hard to confirm the accuracy of our bottom-up simulation with the diverse results of previous studies, our estimation is not far from their results and seems to be reasonable. The Eurasian continent including Eurasian boreal, Eurasian temperate, tropical Asian and Europe areas sequestrate $-0.62 \pm 0.74 \text{ Pg C yr}^{-1}$ and contributed to 30 % of the global terrestrial carbon sink. The third largest carbon sink is in South American tropics, which is around $-0.23 \pm 0.22 \text{ Pg C yr}^{-1}$. Previous studies show that around $-0.5 \sim -0.8 \text{ Pg C yr}^{-1}$ is taken up by old-grown tropical forest for the whole Amazonia (T. Baker et al., 2004; Phillips et al., 2008). Our result under-estimates the Amazonia forest carbon uptake. South American temperate is probably balanced in terrestrial carbon budget ($-0.02 \pm 0.23 \text{ Pg C yr}^{-1}$). Its uncertainty is much larger than the magnitude of carbon sink. Therefore, it is hard to determine the sign of carbon budget in South American temperate region. North and South Africa play different
roles in the global carbon cycle. The northern part releases 0.05 ± 0.28 Pg C yr$^{-1}$, while the southern part absorbs -0.10 ± 0.23 Pg C yr$^{-1}$. The Africa continent plays a limited role in controlling the global terrestrial carbon budget, since the Northern Africa carbon release compensates the carbon uptake in South Africa. Africa old-grown tropic forest is demonstrated to be a carbon sink of $-0.15 \sim -0.43$ Pg C yr$^{-1}$ (Lewis et al., 2009). Including both forest and savanna, Ciais et al. (2009) arrives at an estimation of -0.28 Pg C yr$^{-1}$ carbon sink. Our estimation seems to be low, thus warranted further attention in future analyses.

We aggregate the simulated global terrestrial ecosystem carbon budgets according to eight basic plant function types. Figure 6 shows the mean and uncertainty of the net ecosystem carbon fluxes for each PFT. The largest carbon absorption happens in forests, including boreal, temperate coniferous, temperate deciduous and tropical forests. Forests cover roughly 30% of the land surface and could take up a substantial amount of atmospheric carbon with an annual uptake rate around 2.6 Pg C yr$^{-1}$ in the 1990s (Bonan, 2008). The importance of forests in the global carbon budget is confirmed, although their result is larger than our estimation of 0.9 Pg C yr$^{-1}$ carbon uptakes in 2003. The largest discrepancy is from tropical forest carbon uptake rate. The tropical forest annual carbon uptake rate is around 200 g C m$^{-2}$ yr$^{-1}$ in this study, while it is as large as 400 g C m$^{-2}$ yr$^{-1}$ based on Bonan (2008). The tundra and xeric woodland ecosystems are two weak carbon sinks. For tundra ecosystems, photosynthetic carbon production is strongly limited by low air temperate and is also influenced by the limited photosynthetic active radiation due to the short day length (McGuire et al., 2012; Sitch et al., 2007). For xeric woodland, the ecosystem usually experiences water limitation due to the low precipitation rate (Litvak et al., 2010). Therefore, it was reasonable to see that the magnitudes of carbon sink in tundra and xeric woodland ecosystem are much lower than forest ecosystems. Grassland and shrubland are possible weak carbon sources or even played a neutral role in the global terrestrial carbon cycle. Their uncertainties are generally larger than their mean values. It is hard to even determine the sign of the carbon budgets for these two plant function types.
In summary, our bottom-up results tend to overestimate terrestrial carbon uptake in North America and underestimate carbon sequestration rate in Amazonia and Africa. That is probably resulted from the plant functional type based scaling-up method, even though the method has been widely used in large-scale simulations. The AmeriFlux network provides useful information to constrain the carbon dynamics in biogeochemistry models, but the improvements are usually limited at site levels. It is problematic to scale up site-level calibrated model to a large region with a simple model extrapolation based on plant functional type (M. Chen and Zhuang, 2012). That is because the spatial heterogeneity of the same type of plant function is potentially large and is not well represented in the large-scale extrapolation (Zhu and Zhuang, 2013a). Therefore, the global carbon budgets simulated by the bottom-up biogeochemistry model warrant further refinement. Next we use an atmospheric transport model and CO$_2$ concentration data to further constrain the bottom-up approach estimated global carbon budgets.

3.2 Atmospheric CO$_2$ inverse modeling of surface carbon flux

We carry out two experiments of atmospheric CO$_2$ inversions with TEM simulated NEP (in Sect. 3.1.2) and CASA modeled NEP (-5.29 Pg C yr$^{-1}$) as priors. The CO$_2$ concentration data from surface network and satellite mid-troposphere retrievals are assimilated into GEOS-Chem to infer the magnitude and uncertainty of the terrestrial carbon budgets. We compare our estimations with previous work on atmospheric CO$_2$ inversions to explore the potential improvements or deficiencies of our results. Then we evaluate our posterior estimations of terrestrial ecosystem carbon budgets by comparing our modeled and observed atmospheric CO$_2$ concentrations time series at several representative inland sites from different continents. Hereafter, “GC-TEM” denotes GEOS-Chem inversion with TEM NEP prior; “GC-CASA” denotes GEOS-Chem inversion with CASA NEP prior.
3.2.1 Ecosystem carbon budgets constrained with CO$_2$ concentration data

Globally, GC-TEM estimates the terrestrial ecosystems as a carbon sink of -2.47 ± 0.98 Pg C yr$^{-1}$. Compared with the TEM NEP prior, the global terrestrial carbon budget is enhanced by 25%. GC-CASA estimates the terrestrial ecosystems as a strong carbon sink as large as -4.45 ± 2.66 Pg C yr$^{-1}$, which differs from the CASA NEP prior by 0.84 Pg C yr$^{-1}$. The results imply that TEM tends to underestimate NEP while CASA might greatly overestimate it. By assimilating atmospheric CO$_2$ concentration data, both inversions are able to approach more reasonable estimations of NEP. However, there still exists a large discrepancy between the two inversions. That is because the posterior estimation is not constrained by data only. Prior knowledge also plays an important role in determining the posterior (Kaminski and Heimann, 2001). Since our priors are largely different (TEM -1.97 Pg C yr$^{-1}$ vs. CASA -5.29 Pg C yr$^{-1}$), we expect to see that the posterior NEP discrepancy of the two inversions diminishes to some degree rather than completely vanishes. The recent CO$_2$ inversions inter-comparison study (Peylin et al., 2013) indicates that the mean of net carbon budget over land during 2001–2004 is -1.32 ± 0.39 Pg C yr$^{-1}$. Considering that roughly 1.5 Pg C yr$^{-1}$ are released due to land-use and land-cover change (Canadell et al., 2007; Le Quéré et al., 2009), the net terrestrial carbon budget should be around -2.82 Pg C yr$^{-1}$. It agrees reasonably well with our GC-TEM estimation.

In terms of regional terrestrial carbon budgets, we compare our inversions with five other inversions from Integrated Carbon Observation System (ICOS) project (www.carboscope.eu). Table 4 summarizes their posteriors mean fluxes in 2003 at 11 pre-defined TransCom land regions. It also includes the GC-TEM and GC-CASA inversions. The five inversions estimate terrestrial ecosystem as a carbon sink ranging from -0.78 (Lsce_an_v2.1) to -3.17 Pg C yr$^{-1}$ (Jena_s99_v3.3). It is hard to directly compare our estimation with any of theirs. Therefore, we average the regional fluxes for the five CarboScope inversions (Table 4). The largest departure between GC-TEM and GC-CASA is in the area of South Africa. GC-CASA indicates South Africa to be a strong
sink of atmospheric carbon ($-1.0\,\text{Pg C yr}^{-1}$), while GC-TEM estimates it as a weak sink around $-0.1\,\text{Pg C yr}^{-1}$. Two of the five CarboScope inversions indicate South Africa as a weak carbon source (Jena_s96_v3.3 and Jena_s99_v3.3), but the ensembles mean of the five inversions identifies this region to be a weak carbon source ($0.16\,\text{Pg C yr}^{-1}$) with a large uncertainty ($0.28\,\text{Pg C yr}^{-1}$). As a result, the GC-TEM posterior in South Africa seems more reasonable than GC-CASA.

Large differences are also found in South America tropics among CarboScope ensemble mean (nearly neutral with only $0.022\,\text{Pg C yr}^{-1}$), GC-TEM (carbon sink with $-0.24\,\text{Pg C yr}^{-1}$) and GC-CASA (carbon source with $0.62\,\text{Pg C yr}^{-1}$). The tropics are among the most uncertain regions in the global carbon cycle, due to the scarcity of CO$_2$ observational network in this area (Gurney et al., 2002). The basic question that the tropics act as carbon sources or sinks is still intriguing and frequently revisited. Previously, it is thought that growth rate of the old-grown forest in South America tropics are quite limited. The old forests might cease to sequestrate atmospheric carbon due to their low carbon use efficiency (Chambers et al., 2004). Recently, however, more and more studies demonstrate that tropical forests are continuously assimilating atmospheric carbon and act as carbon sinks (Luyssaert et al., 2008; Stephens et al., 2007). For example, Stephen et al. (2008) infers the tropics to be a weak source of atmospheric carbon ($0.1\,\text{Pg C yr}^{-1}$), by analyzing vertical atmospheric CO$_2$ profiles. Their work concludes that after subtracting land-use and land-cover change induced carbon emissions in the tropics, the tropical lands are probably carbon sinks. It supports our estimation from GC-TEM in the South America tropical regions.

Major differences between GC-TEM and GC-CASA also exist in two other regions: south America temperate and Europe. In South America temperate region, GC-TEM generally agrees with the CarboScope ensemble mean and identifies this region as a weak carbon source ($0.0056\,\text{Pg C yr}^{-1}$ and $0.044\,\text{Pg C yr}^{-1}$, respectively). In contrast, GC-CASA identifies it as a strong carbon sink with $-0.65\,\text{Pg C yr}^{-1}$. And both CarboScope ensemble mean and GC-TEM estimate a carbon sink around $-0.3\,\text{Pg C yr}^{-1}$ in

22609
Europe region. However, the carbon sink estimated by GC-CASA is two times larger than GC-TEM.

We conclude that GC-TEM posterior terrestrial carbon budgets are more consistent with previous studies and empirical knowledge than GC-CASA. Using the same observational datasets and transport model could result in significantly different posterior due to the differences in prior information. A reliable prior achieved by synthesizing biogeochemistry models and observed net carbon flux data is desirable for robust estimations of the global terrestrial carbon budget.

3.2.2 Evaluation with GLOBALVIEW-CO2

Six GLOBALVIEW-CO2 sites are reserved for validation purpose (Table 3). They measure CO₂ concentrations time series at inland locations, which are used as proxies to evaluate sub-continental carbon dynamics. Figure 7 compares the GC-TEM and GC-CASA simulated atmospheric CO₂ concentrations against observations in 2003. The model-data misfits are measured by Root Mean Square Error (RMSE). At all the six locations, the GC-TEM RMSEs are smaller than those of GC-CASA. The scatter plots shows that GC-CASA under-estimates CO₂ concentrations at Australia, South America temperate and North Africa regions. It overestimates CO₂ concentrations in Europe area. In North America temperate and Asia temperate regions, it either overestimates or underestimates CO₂ concentrations depending on the time period of a year.

Although GC-TEM performs reasonably well, RMSEs are relatively large in Europe (4.98 ppm) and North America temperate regions (4.11 ppm). GC-TEM overestimates atmospheric CO₂ concentrations at the Europe site. It indicates that the terrestrial carbon sink in Europe might be underestimated in GC-TEM experiments, if we suppose other background carbon fluxes (e.g. fossil fuel emissions) are correct. GC-TEM under-estimates atmospheric CO₂ concentrations at the US site. Similarly, it implies that the terrestrial carbon uptake in North America temperate region might be overestimated in GC-TEM.
3.2.3 Evaluation with CONTRAIL CO

Figure 8 depicts the monthly averages of CONTRIAL CO2 concentration observations in three latitude bins (30° N–10° N, 10° N–10° S, 10° S–30° S). GEOS-Chem posterior CO2 concentration at CONTRAIL CO2 sampling locations are also grouped into the three bins and compared with the observations. We find that the GC-TEM is superior to GC-CASA in reproducing the atmospheric CO2 concentration. The RMSEs are 1.28, 1.16, 0.69 (ppm) between GC-TEM and CONTRAIL CO2 for the three latitude bins, respectively. The RMSEs between GC-CASA and CONTRIAL CO2, however, are as large as 2.19, 2.03, 2.34 (ppm). The GC-CASA tends to underestimate atmospheric CO2 concentrations at all the northern subtropical, tropical and southern subtropical regions. It indicates that the magnitude of CO2 sink into earth surface might be overestimated in GC-CASA.

Although GC-TEM performs relatively better than GC-CASA, it overestimates atmospheric CO2 concentrations from April to July for tropical region and from May to June for northern subtropical region. For southern subtropical regions, the CO2 concentrations are well reproduced by GC-TEM and they are contained within the CONTRIAL CO2 uncertainty bounds. It implies that GC-TEM might have underestimated the land surface CO2 sinks during April–July between 30° N and 10° S nearby CONTRAIL sampling paths.

4 Conclusions

In this study, we present a two-phase system combining the bottom-up and top-down approaches to estimate the global terrestrial carbon budgets. It consists of two phases, during which different types of carbon data are assimilated into the system to constrain the carbon budgets. During phase one, canopy level carbon flux data (AmeriFlux NEP) are fused into a terrestrial ecosystem model (TEM) to improve the model predictability...
in carbon dynamics. Then the improved model is used to simulate large-scale carbon budgets and associated uncertainties to serve as prior for atmospheric CO$_2$ inversion. During phase two, we use a 4-D variational approach to assimilate multiple CO$_2$ concentration datasets (GLOBALVIEW-CO2 and AIRS) into an atmospheric transport model (GEOS-Chem) and to infer the magnitude and spatial distribution of terrestrial ecosystem carbon budgets.

We find that the terrestrial ecosystem acted as a carbon sink of -2.47 ± 0.98 Pg C yr$^{-1}$ in 2003. Most of the terrestrial sinks are attributed to North America temperate, Europe and Eurasia temperate regions. South America temperate and North Africa act as weak sources of atmospheric carbon with a total carbon source of 0.03 Pg C yr$^{-1}$ in 2003. North America boreal, Eurasia boreal and Australia play similar roles in the global carbon cycle. They absorb a roughly equal amount of atmospheric carbon (-0.15 Pg C yr$^{-1}$). The tropical South America and tropical Asia totally sequestrate -0.27 Pg C yr$^{-1}$.

Our coupled top-down and bottom-up approach is effective for inverting fluxes, especially for areas that CO$_2$ concentrations are not well observed by the CO$_2$ network (Gurney et al., 2008; Kaminski and Heimann, 2001). Another advantage of our study is that CO$_2$ observations from different vertical levels are assimilated into the system. Although surface CO$_2$ networks are generally sparse, they are complementary with satellite CO$_2$ data. The high sensitivity of near surface CO$_2$ concentrations to surface carbon dynamics together with the large horizontal coverage of satellite retrievals could benefit the estimations of global terrestrial carbon fluxes (Nassar et al., 2011). In this study, we assimilate both the GLOBALVIEW-CO2 surface CO$_2$ and AIRS mid-troposphere CO$_2$. The results agree well with recent inter-comparison studies (Peylin et al., 2013) and CarboScope ensemble inversions.

Our study has several limitations. First, the uncertainties come from TEM scaling up method. In this study we adopt a classical scale-up method (model calibrated at site level and scaling up to a region based on vegetation type), which has been widely used in previous studies (Melillo et al., 1993; Zhuang et al., 2010). However, although the
model is carefully trained and could reasonably reproduce observed terrestrial ecosystem carbon dynamics at representative sites for various plant functional types, the spatial heterogeneities could be large within the same plant functional type (M. Chen and Zhuang, 2012; Zhu and Zhuang, 2013a). Even within the same plant functional type, species-level differences might also lead to different estimates of carbon dynamics (He et al., 2013). Another limitation is that we do not consider the atmospheric CO$_2$ transport error while we consider the uncertainties in terrestrial carbon budgets. The mid-troposphere CO$_2$ concentrations are affected by not only surface sources; but also large-scale transport (Chahine et al., 2008) has errors and uncertainties, which should be considered in future analysis with our coupled bottom-up and top-down approach.

Acknowledgements. We thank the eddy flux network principal investigators for providing carbon flux data. We thank AIRS CO2 and Globalview-CO2 groups for providing atmospheric CO$_2$ concentration data. We also thank CarboScope for contributing inversions results for our inter-comparison purpose. This research is funded by NASA Land Use and Land Cover Change program (NASA-NNX09A126G), Department of Energy (DE-FG02-08ER64599), National Science Foundation (NSF-102891 and NSF-0919331), NSF Carbon and Water in the Earth Program (NSF-0630319) and NSF CDI Type II project (IIS-1028291).

Appendix A: TEM model description

The Terrestrial Ecosystem Model (TEM) solves a set of ordinary differential equations (ODEs) to calculate the changes of five biogeochemical pools including vegetation carbon (C_V), soil carbon (C_S), vegetation nitrogen (N_V), soil organic nitrogen (N_S) and soil available inorganic nitrogen (N_{AV}) at a monthly time step. The model is driven with spatially explicit data of climate (precipitation, radiation, air temperature) and elevation, soil type and vegetation cover.

The net carbon budget or net ecosystem production (NEP) is estimated as the balance between photosynthesis and ecosystem respiration including autotrophic respi-
NEP = GPP − RA − RH \hspace{1cm} (A1)

where the gross primary production (GPP) is calculated as:

\[GPP = C_{\text{max}} \cdot f(PAR) \cdot f(T) \cdot f(C_a, C_v) \cdot f(\text{phenology}) \cdot f(\text{others}) \] \hspace{1cm} (A2)

where \(C_{\text{max}} \) is the maximum carbon assimilation capacity of plants. The maximum capacity is constrained under various environmental and ecological conditions, which are represented by function \(f(\cdot) \). \(f(PAR) \) and \(f(T) \) are scalar factors that impose photosynthetic active radiation (PAR) and temperature limitations on plant photosynthesis. \(f(C_a, C_v) \) represents the atmospheric CO\(_2\) concentrations (\(C_a \)) effect and canopy conductance (\(C_v \)) effect. \(f(\text{phenology}) \) considers the influence of the leaf area dynamics on photosynthesis. \(f(\text{others}) \) includes various other constraints that either have relatively small effects on photosynthesis or are not directly related with photosynthesis (e.g., nutrient supply). Further details about the scalar factor formulations could be found in (Raich et al., 1991; McGuire et al., 1992).

Autotrophic respiration (\(R_A \)) is calculated as a summation of plant maintenance respiration (\(R_m \)) and plant growth respiration (\(R_g \)). The growth respiration is assumed to be 20\% of the difference between plant photosynthesis and maintenance respiration, where \(R_m \) is modeled with a classic Q10 relationship:

\[
R_m = K_R \cdot C_V \cdot f(\text{RAQ10}) \hspace{1cm} (A3)
\]

\[
R_g = 20\% \cdot (GPP - R_m) \hspace{1cm} (A4)
\]

\[
R_A = R_m + R_g \hspace{1cm} (A5)
\]

where \(K_R \) and \(C_V \) are autotrophic respiration rate at reference temperature (10\(^{\circ}\)C) and vegetation carbon biomass. \(f(\text{RAQ10}) \) represents the dependence of autotrophic respiration on air temperature. Similar to plant maintenance respiration, the terrestrial...
ecosystem heterotrophic respiration (R_H) is modeled with:

$$R_H = K_D \cdot C_S \cdot f(RHQ10) \cdot \text{MOIST} \quad (A6)$$

here K_D and C_S are heterotrophic respiration at reference temperature and soil carbon pool size. $f(RHQ10)$ and MOIST are effects of soil temperature and moisture on R_H.

References

Table 1. Parameters involved in TEM calibration.

<table>
<thead>
<tr>
<th>ID</th>
<th>Definition</th>
<th>Unit</th>
<th>Empirical range</th>
<th>Related processes</th>
</tr>
</thead>
<tbody>
<tr>
<td>CMAX</td>
<td>Maximum rate of photosynthesis C</td>
<td>g C m(^{-2}) mon(^{-1})</td>
<td>[50, 1500]</td>
<td>Photosynthesis</td>
</tr>
<tr>
<td>K(_I)</td>
<td>Half saturation constant for PAR used by plants</td>
<td>J cm(^{-2}) day(^{-1})</td>
<td>[20, 600]</td>
<td>Photosynthesis</td>
</tr>
<tr>
<td>K(_C)</td>
<td>Half saturation constant for CO(_2)-C uptake by plants</td>
<td>µL L(^{-1})</td>
<td>[20, 600]</td>
<td>Photosynthesis</td>
</tr>
<tr>
<td>A(_{LEAF})</td>
<td>Coefficient A of leaf phenology to model the relative photosynthetic capacity of vegetation</td>
<td>None</td>
<td>[0.1, 1.0]</td>
<td>Photosynthesis</td>
</tr>
<tr>
<td>B(_{LEAF})</td>
<td>Coefficient B of leaf phenology to model the relative photosynthetic capacity of vegetation</td>
<td>None</td>
<td>[0.1, 1.0]</td>
<td>Photosynthesis</td>
</tr>
<tr>
<td>C(_{FALL})</td>
<td>Proportion of vegetation carbon loss as litter-fall monthly</td>
<td>g g(^{-1}) mon(^{-1})</td>
<td>[0.001, 0.015]</td>
<td>Photosynthesis</td>
</tr>
<tr>
<td>RA(_{Q10_0})</td>
<td>Leading coefficient of the Q10 model for plant respiration</td>
<td>None</td>
<td>[1.3502, 3.3633]</td>
<td>Plant respiration</td>
</tr>
<tr>
<td>K(_R)</td>
<td>Plant respiration rate at 0°C</td>
<td>g g(^{-1}) mon(^{-1})</td>
<td>[3.1610(^{-8}), 0.0316]</td>
<td>Plant respiration</td>
</tr>
<tr>
<td>RH(_{Q10})</td>
<td>Change in heterotrophic respiration rate due to 10°C temperature change</td>
<td>None</td>
<td>[1.0, 3.0]</td>
<td>Soil respiration</td>
</tr>
<tr>
<td>K(_{DC})</td>
<td>Heterotrophic respiration rate at 0°C</td>
<td>g g(^{-1}) mon(^{-1})</td>
<td>[0.0005, 0.007]</td>
<td>Soil respiration</td>
</tr>
<tr>
<td>N(_{MAX})</td>
<td>Maximum rate of N uptake by vegetation</td>
<td>mg N m(^{-2}) mon(^{-1})</td>
<td>[500, 700]</td>
<td>N dynamics</td>
</tr>
<tr>
<td>K(_N)</td>
<td>Half saturation constant for N uptake by vegetation</td>
<td>mg cm(^{-3})</td>
<td>[0.0005, 0.010]</td>
<td>N dynamics</td>
</tr>
<tr>
<td>N(_{IP})</td>
<td>Ratio between N immobilized and C respired by heterotrophs</td>
<td>mg g(^{-1})</td>
<td>[5, 100]</td>
<td>N dynamics</td>
</tr>
<tr>
<td>K(_{N2})</td>
<td>Half saturation constant for net mineralization</td>
<td>mg cm(^{-3})</td>
<td>[0.0005, 0.010]</td>
<td>N dynamics</td>
</tr>
<tr>
<td>N(_{FALL})</td>
<td>Proportion of vegetation nitrogen loss as litter-fall monthly</td>
<td>g g(^{-1}) mon(^{-1})</td>
<td>[0.003, 0.012]</td>
<td>N dynamics</td>
</tr>
</tbody>
</table>
Table 2. AmeriFlux sites used for TEM model calibration and validation.

<table>
<thead>
<tr>
<th>Plant functional type</th>
<th>longitude, latitude</th>
<th>Available data</th>
<th>References</th>
</tr>
</thead>
<tbody>
<tr>
<td>Calibration sites</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Validation sites</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Bartlett Experimental Forest</td>
<td>Temperate deciduous</td>
<td>71.28° W, 44.06° N</td>
<td>2004–2006</td>
</tr>
<tr>
<td>Lost Creek</td>
<td>Shrub</td>
<td>89.97° W, 46.08° N</td>
<td>2001–2005</td>
</tr>
<tr>
<td>LBA Tapajos KM67 Mature Forest</td>
<td>Tropical forest</td>
<td>54.95° W, 2.85° N</td>
<td>2003–2004</td>
</tr>
<tr>
<td>Tonzi Ranch</td>
<td>Xeric woodland</td>
<td>120.97° W, 38.43° N</td>
<td>2001–2007</td>
</tr>
</tbody>
</table>
Table 3. Global-view CO₂ inland sites reserved for model validation.

<table>
<thead>
<tr>
<th>ID</th>
<th>Lon</th>
<th>Lat</th>
<th>Elevation (m)</th>
<th>Continent</th>
<th>Site</th>
<th>Observation type</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>-40.53</td>
<td>144.3</td>
<td>500</td>
<td>Australia</td>
<td>Bass Strait/Cape Grim, Tasmania, Australia</td>
<td>Aircraft</td>
</tr>
<tr>
<td>2</td>
<td>-8.92</td>
<td>-56.79</td>
<td>250</td>
<td>South America</td>
<td>Alta Floresta, Brazil</td>
<td>Aircraft</td>
</tr>
<tr>
<td>3</td>
<td>23.2625</td>
<td>5.6322</td>
<td>2715</td>
<td>Africa</td>
<td>Assekrem, Algeria</td>
<td>Surface flask</td>
</tr>
<tr>
<td>4</td>
<td>44.1776</td>
<td>28.6647</td>
<td>5</td>
<td>Europe</td>
<td>Black Sea, Constanta, Romania</td>
<td>Surface flask</td>
</tr>
<tr>
<td>5</td>
<td>36.607</td>
<td>-97.489</td>
<td>374</td>
<td>North America</td>
<td>Southern Great Plains, Oklahoma, US</td>
<td>Surface in situ</td>
</tr>
<tr>
<td>6</td>
<td>44.4516</td>
<td>111.0956</td>
<td>1012</td>
<td>Asia</td>
<td>Ulaan Uul, Mongolia</td>
<td>Surface flask</td>
</tr>
</tbody>
</table>
Table 4. Posterior mean terrestrial carbon fluxes (Pg C yr$^{-1}$) in 2003, aggregated at 11 TransCom land regions. We compare five independent inversions from CarboScope (www.carboscope.eu) with our estimations.

<table>
<thead>
<tr>
<th>Region</th>
<th>Lsce_an_v2.1</th>
<th>CarbonTracker_CTE2008</th>
<th>Jena_s96_v3.3</th>
<th>Lsce_var_v1.0</th>
<th>Jena_s99_v3.3</th>
<th>CarboScope mean and std</th>
<th>GC-TEM (this work)</th>
<th>GC-CASA_CTE2008 (this work)</th>
</tr>
</thead>
<tbody>
<tr>
<td>N America boreal</td>
<td>-0.28</td>
<td>-0.27</td>
<td>0.08</td>
<td>0.15</td>
<td>-0.11</td>
<td>-0.086 ± 0.197</td>
<td>-0.1847</td>
<td>0.0759</td>
</tr>
<tr>
<td>N America temperate</td>
<td>0.06</td>
<td>-0.54</td>
<td>-0.44</td>
<td>-0.27</td>
<td>-0.7</td>
<td>-0.378 ± 0.290</td>
<td>-0.9305</td>
<td>-1.0099</td>
</tr>
<tr>
<td>S America tropic</td>
<td>-0.15</td>
<td>0.13</td>
<td>-0.08</td>
<td>0.44</td>
<td>-0.23</td>
<td>0.022 ± 0.269</td>
<td>-0.2438</td>
<td>0.6226</td>
</tr>
<tr>
<td>S America temperate</td>
<td>0.03</td>
<td>-0.04</td>
<td>-0.08</td>
<td>0.38</td>
<td>-0.07</td>
<td>0.044 ± 0.192</td>
<td>0.0056</td>
<td>-0.6528</td>
</tr>
<tr>
<td>N Africa</td>
<td>0.21</td>
<td>0.09</td>
<td>0.23</td>
<td>-0.32</td>
<td>-0.29</td>
<td>-0.016 ± 0.269</td>
<td>0.0245</td>
<td>-0.2661</td>
</tr>
<tr>
<td>S Africa</td>
<td>0.58</td>
<td>0.26</td>
<td>-0.06</td>
<td>0.16</td>
<td>-0.14</td>
<td>0.16 ± 0.264</td>
<td>-0.1164</td>
<td>-1.0378</td>
</tr>
<tr>
<td>Eurasia boreal</td>
<td>-0.34</td>
<td>-0.48</td>
<td>-0.41</td>
<td>-0.09</td>
<td>-0.62</td>
<td>-0.388 ± 0.196</td>
<td>-0.1244</td>
<td>-0.474</td>
</tr>
<tr>
<td>Eurasia temperate</td>
<td>-0.45</td>
<td>-0.25</td>
<td>-1.42</td>
<td>-0.55</td>
<td>-0.45</td>
<td>-0.624 ± 0.458</td>
<td>-0.3673</td>
<td>-0.6508</td>
</tr>
<tr>
<td>Asia tropic</td>
<td>-0.5</td>
<td>0.01</td>
<td>-0.22</td>
<td>-0.56</td>
<td>-0.17</td>
<td>-0.288 ± 0.237</td>
<td>-0.0303</td>
<td>-0.1538</td>
</tr>
<tr>
<td>Australia</td>
<td>0.14</td>
<td>0.06</td>
<td>0</td>
<td>0.02</td>
<td>0</td>
<td>0.044 ± 0.058</td>
<td>-0.1468</td>
<td>-0.1859</td>
</tr>
<tr>
<td>Europe</td>
<td>-0.08</td>
<td>-0.08</td>
<td>-0.35</td>
<td>-0.52</td>
<td>-0.39</td>
<td>-0.284 ± 0.196</td>
<td>-0.3637</td>
<td>-0.7267</td>
</tr>
</tbody>
</table>
Figure 1. Modeling framework.
Figure 2. Globalview-CO$_2$ surface observational network, including surface stationary sites (red `+`), airplane (green `x`) and ship (black `*`) sampling. Six sites are reserved for model validation (blue `o`).
Figure 3. Prior and posterior model parameters and associated uncertainties. Grey boxes are normalized prior parameter values and uncertainties. Red star and error bars are normalized posterior parameter values and uncertainties. The 15 parameters are grouped into four categories: (1) photosynthesis (Photosyn); (2) plant respiration (PR); (3) soil respiration (SR); and (4) nitrogen processes (Nitrogen).
Figure 4. (a) Prior model and (b) Posterior model are validated against AmeriFlux observations: x-axis is simulated NEP and y-axis is AmeriFlux observed NEP. Coefficient of determination (COD: Eq. 13) is used to evaluate the model-data misfit.
Figure 5. Net ecosystem carbon flux estimated with bottom-up approach for eleven sub-continental regions. Negative values indicate carbon sinks and positive values indicate carbon sources to the atmosphere.
Figure 6. Net ecosystem carbon flux estimated with bottom-up approach for 8 basic plant functional types. Negative values indicate carbon sinks and positive values indicate carbon sources to the atmosphere.
Figure 7. Posterior monthly CO₂ concentrations in 2003 from GC-TEM (blue) and GC-CASA (red) inversions, evaluated with Globalview-CO₂ representative inland sites from different continents.
Figure 8. Posterior CO$_2$ concentrations in 2003 from GC-TEM (black) and GC-CASA (blue) inversions, evaluated with CONTRAIL ASE (Automatic Air Sampling Equipment) CO$_2$ concentration data. The CO$_2$ concentrations are averaged for three latitudinal bands based on CONTRAIL ASE sampling locations between 140.15° E and 152.27° E.