Carbon dynamics of terrestrial ecosystems on the Tibetan Plateau during the 20th century: an analysis with a process-based biogeochemical model

Q. Zhuang1*, J. He1,2, Y. Lu1, L. Ji3, J. Xiao1 and T. Luo2

1Department of Earth and Atmospheric Sciences and Department of Agronomy, Purdue University, West Lafayette, IN, 47906, USA, 2The Institute of Tibetan Plateau Research, Chinese Academy of Sciences, PO Box 2871, Beijing 100085, China, 3Chengdu Institute of Mountain Hazards and Environment, Chinese Academy of Sciences, Chengdu 610041, China

ABSTRACT

Aim The Tibetan Plateau accounts for about a quarter of the total land area of China and has a variety of ecosystems ranging from alpine tundra to evergreen tropics. Its soils are dominated by permafrost and are rich in organic carbon. Its climate is unique due to the influence of the Asian monsoon and its complex topography. To date, the carbon dynamics of the Tibetan Plateau have not been well quantified under changes of climate and permafrost conditions. Here we use a process-based biogeochemistry model, the Terrestrial Ecosystem Model (TEM), which was incorporated with a soil thermal model, to examine the permafrost dynamics and their effects on carbon dynamics on the plateau during the past century.

Location The Tibetan Plateau.

Methods We parameterize and verify the TEM using the existing data for soil temperature, permafrost distribution and carbon and nitrogen from the region. We then extrapolate the model and parameters to the whole plateau.

Results During the 20th century, the Tibetan Plateau changed from a small carbon source or neutral in the early part of the century to a sink later, with a large inter-annual and spatial variability due to changes of climate and permafrost conditions. Net primary production and soil respiration increased by 0.52 and 0.22 Tg C year$^{-1}$, respectively, resulting in a regional carbon sink increase of 0.3 Tg C year$^{-1}$. By the end of the century, the regional carbon sink reached 36 Tg C year$^{-1}$ and carbon storage in vegetation and soils is 32 and 16 Pg C, respectively. On the plateau, from west to east, the net primary production, soil respiration and net ecosystem production increased, due primarily to the increase of air temperature and precipitation and lowering elevation. In contrast, the decrease of carbon fluxes from south to north was primarily controlled by precipitation gradient. Dynamics of air temperature and associated soil temperature and active layer depth resulted in a higher plant carbon uptake than soil carbon release, strengthening the regional carbon sink during the century.

Main conclusions We found that increasing soil temperature and deepening active layer depth enhanced soil respiration, increasing the net nitrogen mineralization rate. Together with the effects of warming air temperature and rising CO$_2$ concentrations on photosynthesis, the stronger plant nitrogen uptake due to the enhanced available nitrogen stimulates plant carbon uptake, thereby strengthening the regional carbon sink as the rate of increase net primary production was faster than that of soil respiration. Further, the warming and associated soil thermal dynamics shifted the regional carbon sink from the middle of July in the early 20th century to early July by the end of the century. Our study suggests that soil thermal dynamics should be considered for future quantification of carbon dynamics in this climate-sensitive region.

Keywords Carbon dynamics, carbon sink, net ecosystem production, net primary production, permafrost, soil thermal model, Terrestrial Ecosystem Model, Tibetan Plateau.
INTRODUCTION

The collision between the Indian plate and the Eurasian continent shaped the Tibetan Plateau and its geological features. The Tibetan Plateau is the highest and youngest plateau in the world covering an area of 2.57 million km² with an average altitude above 4000 m in low–middle latitudes and accounting for 26.8% of China’s land area (Zhang et al., 2002). According to the Chinese climate classification system, the plateau is classified as a ‘plateau climate’ (Li, 1993), a subtropical to temperate mountain climate. The South Asian monsoon characterizes the wide ranges of temperature and moisture gradients on the Tibetan Plateau. From south-east to north-west, supplies of heat and water decrease gradually, and forest, meadow, steppe and desert ecosystems are consequently developed with time (Zheng, 1996).

The Tibetan Plateau is a unique region on Earth for studying the responses of natural ecosystems to climatic changes because: (1) its vegetation remains relatively undisturbed by human activities, (2) it has a unique local climate due to the monsoon and variable altitude (Feng et al., 1998; Du, 2001), and (3) its ecosystems are sensitive to global climatic change (Luo et al., 2002). In the most recent 600 years, each warm and cold stage in China appeared first on the Tibetan Plateau (Feng et al., 1998). During the period 1980–94, the warmest year also appeared first in the south-eastern Tibetan Plateau (Feng et al., 1998). In the past 40 years, it has been shown that annual mean air temperature on the Tibetan Plateau has increased at a rate of 0.26 °C decade⁻¹ in the most recent 40 years, which is much greater than in any other region in China (Du, 2001). A study has demonstrated that the increase in air temperature caused permafrost-dominated areas in the plateau to shrink by 0.1 million km² (Wang et al., 2000). Further, the study indicated that the lower altitudinal limit of permafrost in the region has risen 40–80 m. More importantly, the region contains a large amount of soil carbon and its fate is uncertain under changing climatic conditions. In recent years, how the terrestrial ecosystems in the Tibetan Plateau are responding to these climate changes with respect to carbon dynamics has attracted much attention. To date, progress has been made in investigating terrestrial ecosystem productivity and carbon storage (e.g. Luo et al., 1998, 2004; Lu & Ji, 2002; Piao & Fang, 2002; Wang et al., 2002, 2003; Zhou et al., 2004). However, there has been much less investigation of the net carbon budget on the plateau. A limited number of studies on net carbon exchange between the ecosystems and atmosphere in the region have only been conducted at site level (e.g. Kato et al. 2004a,b, 2006). Further the existing analyses have not considered the effects of soil thermal and permafrost dynamics as consequences of climate change over the whole of the plateau.

Here we use the field data of soil temperature and carbon and nitrogen fluxes and pools obtained from the plateau to parameterize a process-based biogeochemistry model, the Terrestrial Ecosystem Model (TEM; Zhuang et al., 2003), which was incorporated with a soil thermal model, for the major ecosystem types in the region. We then apply the model and parameterization to the whole of the plateau to examine how climatic changes have affected carbon dynamics during the 20th century. The study also strives to identify the key controls on carbon dynamics in this climate-sensitive region. This study is a significant step towards assessing the role of the Tibetan Plateau in the global carbon cycle and the climate system.

METHOD

Overview

Considerable field measurements of ecosystem carbon pool sizes and fluxes and soil thermal regimes have been conducted on the Tibetan Plateau, and the characteristics of vegetation and soils of the key ecosystem types have also been well documented (e.g. Paetzold et al., 2003; Luo et al., 2004, 2005a,b). In this study, we used these data and the TEM biogeochemistry model to quantify the changes in carbon fluxes and pool sizes in the region. Below, we first describe the TEM model and its applicability to the region. We then discuss how the model was parameterized using the field data collected on the plateau. Third, we describe how the model and parameters were verified with the measurements for major ecosystem types in the region. Finally, we describe how we applied the model and parameterizations to the plateau to analyse its carbon dynamics in response to changes in climate and atmospheric CO₂ during the 20th century.

The Terrestrial Ecosystem Model (TEM)

The TEM is a process-based, global-scale ecosystem model that uses spatially referenced information on climate, elevation, soils and vegetation to make monthly estimates of carbon and nitrogen fluxes and pool sizes of the terrestrial biosphere (Zhuang et al., 2003). In this study, we used the version of TEM that was coupled with dynamics of freeze and thaw for permafrost- and non-permafrost-dominated ecosystems (Zhuang et al., 2001, 2002, 2003). This version of TEM has been extensively used to evaluate carbon dynamics in northern high latitudes (e.g. Euskirchen et al., 2006; Zhuang et al., 2006; Balshi et al., 2007).

In TEM, for each monthly time step, net ecosystem production (NEP) is calculated as the difference between net primary production (NPP) and heterotrophic respiration (Rₜ₈). NPP is calculated as the difference between gross primary production (GPP) and plant autotrophic respiration (Rₜ₈). The algorithm for calculating Rₜ₈ has been described elsewhere (Raich et al., 1991; McGuire et al., 1992, 1997). Monthly GPP considers the effects of several factors and is calculated as:

\[\text{GPP} = C_{max} f(\text{PAR}) f(\text{phenology}) f(\text{foliage}) f(T) f(C_s, G_s) f(\text{NA}) f(\text{FT}) \]

where \(C_{max} \) is the maximum rate of carbon assimilation, PAR is photosynthetically active radiation and \(f(\text{phenology}) \) is monthly leaf area relative to leaf area during the month of maximum leaf area and depends on monthly estimated evapotranspiration.
Carbon dynamics on the Tibetan Plateau

Table 1 Soil thermal model parameters for tundra and forest ecosystems on the Tibetan Plateau.

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Tundra</th>
<th>Forest</th>
<th>Unit</th>
</tr>
</thead>
<tbody>
<tr>
<td>Upper organic soil thickness</td>
<td>0.22</td>
<td>0.20</td>
<td>m</td>
</tr>
<tr>
<td>Lower organic soil thickness</td>
<td>0.50</td>
<td>0.35</td>
<td>m</td>
</tr>
<tr>
<td>Upper mineral soil thickness</td>
<td>1.00</td>
<td>1.00</td>
<td>m</td>
</tr>
<tr>
<td>Upper organic soil thawed thermal conductivity</td>
<td>2.50</td>
<td>1.25</td>
<td>W m⁻¹ K⁻¹</td>
</tr>
<tr>
<td>Upper organic soil frozen thermal conductivity</td>
<td>1.50</td>
<td>0.26</td>
<td>W m⁻¹ K⁻¹</td>
</tr>
<tr>
<td>Lower organic soil thawed thermal conductivity</td>
<td>1.70</td>
<td>1.70</td>
<td>W m⁻¹ K⁻¹</td>
</tr>
<tr>
<td>Lower organic soil frozen thermal conductivity</td>
<td>2.00</td>
<td>0.80</td>
<td>W m⁻¹ K⁻¹</td>
</tr>
<tr>
<td>Upper mineral soil thawed thermal conductivity</td>
<td>1.50</td>
<td>1.20</td>
<td>W m⁻¹ K⁻¹</td>
</tr>
<tr>
<td>Upper mineral soil frozen thermal conductivity</td>
<td>2.50</td>
<td>2.10</td>
<td>W m⁻¹ K⁻¹</td>
</tr>
<tr>
<td>Upper organic soil water content</td>
<td>0.34</td>
<td>0.34</td>
<td>Volumetric %</td>
</tr>
<tr>
<td>Lower organic soil water content</td>
<td>0.45</td>
<td>0.45</td>
<td>Volumetric %</td>
</tr>
<tr>
<td>Upper mineral soil water content</td>
<td>0.43</td>
<td>0.43</td>
<td>Volumetric %</td>
</tr>
<tr>
<td>Upper organic soil thawed heat capacity</td>
<td>1.50</td>
<td>1.70</td>
<td>MJ m⁻¹ K⁻¹</td>
</tr>
<tr>
<td>Upper organic soil frozen heat capacity</td>
<td>1.20</td>
<td>1.50</td>
<td>MJ m⁻¹ K⁻¹</td>
</tr>
<tr>
<td>Lower organic soil thawed heat capacity</td>
<td>2.60</td>
<td>2.60</td>
<td>MJ m⁻¹ K⁻¹</td>
</tr>
<tr>
<td>Lower organic soil frozen heat capacity</td>
<td>2.40</td>
<td>2.40</td>
<td>MJ m⁻¹ K⁻¹</td>
</tr>
<tr>
<td>Upper mineral soil thawed heat capacity</td>
<td>3.10</td>
<td>3.10</td>
<td>MJ m⁻¹ K⁻¹</td>
</tr>
<tr>
<td>Upper mineral soil frozen heat capacity</td>
<td>1.70</td>
<td>1.70</td>
<td>MJ m⁻¹ K⁻¹</td>
</tr>
</tbody>
</table>

The full definition of parameters is in Zhuang et al. (2001).

(Raich et al., 1991). The function \(f(\text{foliage}) \) is a scalar function that ranges from 0.0 to 1.0 and represents the ratio of canopy leaf biomass relative to the maximum leaf biomass (Zhuang et al., 2002). \(T \) is monthly air temperature, \(C_a \) is atmospheric \(\text{CO}_2 \) concentration, \(G \) is relative canopy conductance and \(\text{NA} \) is nitrogen availability. The effects of elevated atmospheric \(\text{CO}_2 \) directly affect \(f(C_a, G) \) by altering the intercellular \(\text{CO}_2 \) of the canopy (McGuire et al., 1997; Pan et al., 1998). The function \(f(\text{NA}) \) models the limiting effects of plant nitrogen status on GPP (McGuire et al., 1992). The function of \(f(\text{FT}) \) describes the effects of freeze–thaw dynamics on GPP. In TEM, two freezing fronts are modelled, including freezing down due to cold air temperature and freezing-up due to permafrost underneath the soils (Zhuang et al., 2001). As a result, the soil temperature profile is more accurately simulated than without considering permafrost conditions. \(R_\text{FT} \) is calculated based on modelled soil temperatures by considering permafrost dynamics. More details of how GPP and \(R_\text{FT} \) are calculated by considering permafrost dynamics can be found in Zhuang et al. (2003). In this version of the TEM, we modelled the net nitrogen mineralization rate (\(\text{NETNMIN} \)) as a function of soil temperature changes in the top 20 cm of soils. Thus, the effects of changing permafrost conditions on soil thermal regimes will influence not only soil decomposition rate but also the nitrogen mineralization rate, and thus the available nitrogen and the rate of nitrogen uptake by vegetation (Zhuang et al., 2003).

Model parameterization

The TEM requires the use of monthly climatic data and soil- and vegetation-specific parameters associated with the soil and vegetation carbon and nitrogen processes. Although many of the parameters in the model are defined from published information (e.g. Raich et al., 1991; McGuire et al., 1992; Zhuang et al., 2003), some are determined by calibrating the model to fluxes and pool sizes of intensively studied field sites. For this application of the TEM, we developed a set of parameters for soil thermal dynamics and carbon and nitrogen processes specifically for the Tibetan Plateau for various ecosystem types based on field data collected in the region. Monthly air temperature and precipitation of the six calibration sites used in this study are multi-year averages based on the local meteorological observations on the Tibetan Plateau (Luo et al., 2004).

To parameterize the soil thermal dynamics of Tibetan Plateau ecosystems, we parameterized tundra and boreal forest ecosystems based on field data of soil temperatures for depths of 10, 20, 30 and 100 cm at the Fenghuoshan and Gongga sites, respectively. The parameterization was conducted by minimizing the differences between observed and simulated soil temperature at these depths. The parameters of soil thermal conductivity and heat capacity are documented in Table 1. The carbon and nitrogen dynamics of the TEM were then parameterized for major ecosystem types including wet tundra, boreal forest, mixed temperate forest, temperate deciduous forest, boreal woodlands and alpine tundra. For each ecosystem type, we used the measured data of pool sizes of vegetation carbon, soil carbon, vegetation nitrogen, soil nitrogen and annual NPP fluxes for calibration (see Appendix S1 in Supporting Information).

Site-level verification

Four alpine tundra and boreal forest ecosystem sites were selected to verify our parameterization for soil thermal dynamics. At these sites, the soil temperature profile was observed at
Q. Zhuang et al.

Table 2 Comparison between the observed and simulated monthly temperature for each soil layer at different sites on the Tibetan Plateau.

<table>
<thead>
<tr>
<th>Site name</th>
<th>Longitude (degrees)</th>
<th>Latitude (degrees)</th>
<th>Elevation (m)</th>
<th>Vegetation type in TEM</th>
<th>Periods</th>
</tr>
</thead>
<tbody>
<tr>
<td>Wuli</td>
<td>92.7</td>
<td>34.5</td>
<td>4597</td>
<td>Alpine tundra</td>
<td>Sept. 1999–Dec. 2000</td>
</tr>
<tr>
<td>Fenghuoshan</td>
<td>92.9</td>
<td>34.7</td>
<td>4760</td>
<td>Alpine tundra</td>
<td>June 1998–Dec. 2000</td>
</tr>
<tr>
<td>Liangdaohe</td>
<td>91.7</td>
<td>31.8</td>
<td>4850</td>
<td>Alpine tundra</td>
<td>Oct. 1999–July 2000</td>
</tr>
<tr>
<td>Gongga</td>
<td>102.0</td>
<td>29.5</td>
<td>3000</td>
<td>Boreal forest</td>
<td>Jan. 1998–Dec. 1999</td>
</tr>
</tbody>
</table>

TEM, Terrestrial Ecosystem Model.

Table 3 Characteristics of verification sites for the Terrestrial Ecosystem Model (TEM) parameters used in this study.

<table>
<thead>
<tr>
<th>Site name*</th>
<th>Longitude (degrees)</th>
<th>Latitude (degrees)</th>
<th>Elevation (m)</th>
<th>Annual precipitation (mm)</th>
<th>Annual temperature (°C)</th>
<th>Soil texture (%)</th>
<th>Vegetation type in TEM</th>
</tr>
</thead>
<tbody>
<tr>
<td>Wudaoliang (WDL)</td>
<td>93.07</td>
<td>35.22</td>
<td>4626</td>
<td>270.3</td>
<td>−4.2</td>
<td>91</td>
<td>6</td>
</tr>
<tr>
<td>Tuotuohe (TTH)</td>
<td>92.55</td>
<td>34.31</td>
<td>4582</td>
<td>301.3</td>
<td>−3.9</td>
<td>97</td>
<td>2</td>
</tr>
<tr>
<td>Damxung (DX)</td>
<td>91.15</td>
<td>30.50</td>
<td>4288</td>
<td>486.9</td>
<td>−0.1</td>
<td>53</td>
<td>32</td>
</tr>
<tr>
<td>Gandansi (GDS)</td>
<td>91.49</td>
<td>29.75</td>
<td>4100</td>
<td>488.0</td>
<td>3.1</td>
<td>49</td>
<td>36</td>
</tr>
<tr>
<td>Nagqu (NQ)</td>
<td>91.93</td>
<td>31.57</td>
<td>4636</td>
<td>468.7</td>
<td>−2.6</td>
<td>62</td>
<td>28</td>
</tr>
<tr>
<td>Halbei (HB)</td>
<td>101.31</td>
<td>37.56</td>
<td>3280</td>
<td>547.7</td>
<td>−1.0</td>
<td>70</td>
<td>17</td>
</tr>
<tr>
<td>Perk of Sergyla Mt (PSM)</td>
<td>94.65</td>
<td>29.61</td>
<td>4560</td>
<td>722.7</td>
<td>0.4</td>
<td>49</td>
<td>42</td>
</tr>
<tr>
<td>Maizhongkongka (MZG)</td>
<td>91.63</td>
<td>29.80</td>
<td>3780</td>
<td>445.8</td>
<td>5.0</td>
<td>68</td>
<td>22</td>
</tr>
<tr>
<td>Gongga Mt site 4 (GG4)</td>
<td>102.00</td>
<td>29.58</td>
<td>3000</td>
<td>1926.0</td>
<td>4.0</td>
<td>82</td>
<td>11</td>
</tr>
<tr>
<td>Gongga Mt site 6 (GG6)</td>
<td>101.97</td>
<td>29.55</td>
<td>3700</td>
<td>2384.7</td>
<td>−0.2</td>
<td>74</td>
<td>16</td>
</tr>
</tbody>
</table>

*Items in parentheses are abbreviation of the site names. The information for these sites is based on our field studies (Luo et al., 2002, 2004, 2005a,b).

Regional simulations

We conducted two sets of regional simulations; one considered the effects of soil thermal dynamics (hereafter referred to as ‘on’) and the other did not (hereafter referred to as ‘off’). Specifically, in the ‘on’ simulations, R0 and NETNMN were calculated based on modelled soil temperatures by considering permafrost dynamics and GPP was modelled a function of freeze–thaw dynamics (Zhuang et al., 2003). In contrast, in the ‘off’ simulations, these carbon and nitrogen fluxes were modelled as functions of air temperature. To conduct these simulations, we first organized the atmosphere, vegetation, soil texture and elevation data at a resolution of 8 km × 8 km from 1901 to 2002. Specifically, the monthly air temperature, precipitation and cloudiness were based on data from the CRU (Mitchell & Jones, 2005). These data were then resampled to an 8 km spatial resolution from the original 0.5° × 0.5° resolution. The annual atmospheric CO2 data for the period 1901–2002 required for driving the TEM were from our previous studies (Zhuang et al., 2003). The vegetation data over the Tibetan Plateau were derived from the International Geosphere-Biosphere Program (IGBP) Data and Information System (DIS) DISCover Database (Belward et al., 1999; Loveland et al., 2000). The 1 km × 1 km DISCover dataset was reclassified to the TEM vegetation classification scheme (Mêllilo et al., 1993) and then aggregated to an 8 km × 8 km spatial resolution. The soil texture data were based on the Food and Agriculture Organization/Civil Service Reform Committee (FAO/CSRC) digitization of the FAO-UNESCO (1971) soil map. The soil texture data were resampled from
Simulated nitrogen or NPP values agreed with the observations at the rest of sites. Likewise, the simulated and Gongga Mountain sites 4 and 6, model simulations compare so well with observations at Wudaoliang, Tuotuohe, Gandansi and Gongga Mountain site 4. For soil nitrogen, the model reproduces the observations at Wudaoliang, Tuotuohe, Gandansi and Gongga Mountain site 4. For soil nitrogen, the model underestimates at Nagqu, Haibei and Gongga Mountain site 6, but overestimates at Perk of Sergyla Mountain and Maizhogongka. The discrepancy between carbon and nitrogen simulations and our observations may be due to the underestimates of these pools in our parameterization sites, leading to lower values in these verification sites. This suggests that we should be cautious in interpreting our regional simulations of these pools. For NPP, if we pool together the simulated average annual NPP of all 10 sites for the 1990s, the comparison indicates that the model simulations are comparable to the observed annual NPP (\(R^2 = 0.56, P < 0.01, n = 10 \)).

Regional soil thermal and moisture dynamics

TEM simulation shows that the total area of permafrost distribution is 1.52 million km². We used the simulated soil temperature profile for each verification site (Table 2). The model performs better in soil layers shallower than 50 cm (\(R^2 > 0.78, P < 0.01, n = 31 \)) and slightly deviates from observation at 100 cm depth (\(R^2 > 0.48, P < 0.01, n = 31 \)) probably due to the underestimates at Nagqu and Gongga Mountain sites 4 and 6, model simulations compare well with observations at the rest of sites. Likewise, the simulated vegetation nitrogen is similar to the observations (\(R^2 = 0.86, P < 0.01, n = 10 \)). Except at Nagqu and Gongga Mountain sites 4 and 6, model simulations compare well with observations at the rest of sites. Likewise, the simulated vegetation nitrogen is similar to the observations (\(R^2 = 0.86, P < 0.01, n = 10 \)). The model underestimates at Nagqu, but overestimates at Perk of Sergyla Mountain and Maizhogongka. In contrast, the simulated soil carbon and nitrogen pools agree with the observations (\(R^2 < 0.32, P < 0.01, n = 10 \)). For soil carbon, the model is able to reproduce the observations at Wudaoliang, Tuotuohe, Gandansi and Gongga Mountain site 4. For soil nitrogen, the model underestimates at Nagqu, Haibei and Gongga Mountain site 6, but overestimates at Perk of Sergyla Mountain and Maizhogongka. The discrepancy between carbon and nitrogen simulations and our observations may be due to the underestimates of these pools in our parameterization sites, leading to lower values in these verification sites. This suggests that we should be cautious in interpreting our regional simulations of these pools. For NPP, if we pool together the simulated average annual NPP of all 10 sites for the 1990s, the comparison indicates that the model simulations are comparable to the observed annual NPP (\(R^2 = 0.56, P < 0.01, n = 10 \)).

RESULTS

Site-level studies

The parameterized TEM is able to reproduce the observed soil temperature profile for each verification site (Table 2). The model performs better in soil layers shallower than 50 cm (\(R^2 > 0.78, P < 0.01, n = 31 \)) and slightly deviates from observation at 100 cm depth (\(R^2 > 0.48, P < 0.01, n = 31 \)) probably due to our prescribed soil moisture. Prescribed soil moisture in different layers may be different from real conditions in the field, which affects soil thermal conductivity and heat capacity, and thus the soil thermal dynamics.

Our simulated pool sizes of carbon and nitrogen and annual NPP are comparable to the observed data (Fig. 1). Specifically, for vegetation carbon, TEM simulation is correlated well with the observations (\(R^2 = 0.91, P < 0.01, n = 10 \)). Except at Nagqu and Gongga Mountain sites 4 and 6, model simulations compare well with observations at the rest of sites. Likewise, the simulated vegetation nitrogen is similar to the observations (\(R^2 = 0.86, P < 0.01, n = 10 \)). The model underestimates at Nagqu, but overestimates at Perk of Sergyla Mountain and Maizhogongka. In contrast, the simulated soil carbon and nitrogen pools agree with the observations (\(R^2 < 0.32, P < 0.01, n = 10 \)). For soil carbon, the model is able to reproduce the observations at Wudaoliang, Tuotuohe, Gandansi and Gongga Mountain site 4. For soil nitrogen, the model underestimates at Nagqu, Haibei and Gongga Mountain site 6, but overestimates at Perk of Sergyla Mountain and Maizhogongka. The discrepancy between carbon and nitrogen simulations and our observations may be due to the underestimates of these pools in our parameterization sites, leading to lower values in these verification sites. This suggests that we should be cautious in interpreting our regional simulations of these pools. For NPP, if we pool together the simulated average annual NPP of all 10 sites for the 1990s, the comparison indicates that the model simulations are comparable to the observed annual NPP (\(R^2 = 0.56, P < 0.01, n = 10 \)).

Figure 1 Verification of the Terrestrial Ecosystem Model (TEM) parameterization of various ecosystem types in the Tibetan Plateau for (a) vegetation, (b) soils and (c) net primary production (NPP). The coefficients of determination (\(R^2 \)) for the comparisons between the observed and simulated data are 0.56 for NPP, 0.23 for soil carbon, 0.42 for soil nitrogen, 0.91 for vegetation carbon and 0.86 for vegetation nitrogen. For site abbreviations see Table 3.

Carbon dynamics on the Tibetan Plateau

Global Ecology and Biogeography, 19, 649–662, © 2010 Blackwell Publishing Ltd

653
Figure 2 (a) Permafrost distribution from Brown et al. (1998) (b) Permafrost distribution from Qiu et al. (2002). (c) Current permafrost distribution simulated with the Terrestrial Ecosystem Model (TEM).
0.3 million km2 of mountain permafrost (Fig. 2b). TEM simulations also agree well with the data with respect to the geographic distribution of permafrost (Fig. 2c).

As to soil thermal regimes including changes of soil temperatures and active layer depths during the 20th century, our simulations are also comparable with other studies. At the 50 cm soil depth, our simulated soil temperature increases 0.5 °C from the 1970s to the 1990s. This is consistent with the finding of Wang et al. (2000) that there was a 0.1–0.5 °C increase in the annual ground temperature. Our simulated spatial patterns of active layer depths in recent decades are also comparable with a model study of Oelke & Zhang (2007).

Our simulations indicate that the annual soil temperatures in the top 20 cm are mostly below 0.0 °C, with an increasing trend in response to the increase in air temperature through the 20th century (Fig. 3a,d). The rate of increase of the soil temperature is 0.02 °C year$^{-1}$ from 1970 to 2002 ($R^2 = 0.36; P < 0.001, n = 33$). At a soil depth of 50 cm, our simulated soil temperature increases by 0.5 °C from the 1970s to the 1990s. The region has significant spatial variability in soil temperature with an increasing trend spanning different decades (data not shown). Specifically, the averaged soil temperature in the top 20 cm increased in the interior of the Tibetan Plateau dominated by discontinuous permafrost. The simulated regional maximum active layer depth fluctuates around 3.25 m, with a slight increase corresponding to an increase in air temperature in recent years (Fig. 3a,e). From 1973 to 2002, the region had more areas with deeper active layer depths compared with the period 1901–30, due to warming (Fig. 4).

As a consequence of warming air temperature, the regional soil moisture shows a drying trend in the region while precipitation shows no significant changes (Fig. 3b,c). Spatially, the drying trend evidently appeared in the interior of the Tibetan Plateau; volumetric soil moisture in many areas decreased from 50–60% in the 1930s to a level of 40–50% in the 1990s (data not shown).

Regional carbon dynamics

TEM simulations indicate that the Tibet Plateau acted as a carbon sink of 35.8 Tg C year$^{-1}$ during the 1990s (Table 4). This sink is the difference between the NPP of 451.6 Tg C year$^{-1}$ and R_{d1} of 415.8 Tg C year$^{-1}$ in the total vegetated area of 1.4 million km2. Tall grasslands with an area of 1.0 million km2 dominated the regional sink, and were responsible for 90% of the total sink. Short grasslands and mixed temperate forests contributed the second largest sink of 0.9 Tg C year$^{-1}$ each. boreal forest, boreal woodland and temperate deciduous forests contributed less than 0.5 Tg C year$^{-1}$ to the total sink. Without considering the effects of permafrost dynamics, TEM underestimates the sink by 5 Tg C year$^{-1}$ primarily due to underestimates of NPP (Table 4).

The simulated GPP is 948.8 g C m$^{-2}$ year$^{-1}$ during the 1990s (Table 4). Our simulated R_{d1} ranges from 0.1 to 342 Tg C year$^{-1}$ for different ecosystems (Table 4).

During the 20th century, the Tibetan Plateau exhibited a significant inter-annual variability of carbon dynamics (Fig. 3f–h). Overall, the regional sink slightly increased due to warming climate and rising CO$_2$ concentrations (Fig. 3a,g). Consequently, the regional vegetation and soil carbon increased (Fig. 3i,j). TEM estimates of the regional vegetation and soil carbon were 32 and 16 Pg C, respectively, during the 1990s (Table 4).

In response to the climatic changes of the 20th century, the regional carbon sink shifted from the middle of July in the 1920s to early July in the 1990s (Fig. 5a). In contrast, without considering the effects of soil thermal dynamics in TEM simulations, the seasonal trend of this shift was less obvious (Fig. 5b). Further, the simulated annual carbon sink has an increase trend from the 1920s to the present when soil thermal effects are considered. However, TEM does not show the same trend if soil thermal effects are switched off in simulations. In addition, two different simulations present different sink strengths in the 1990s.

Our simulations indicate that there was great spatial variability in the strength of the sink or source in the region (Fig. 6). From the 1930s to the 1990s, the regional sink became stronger due to an increasing sink in some areas and a decreasing source in other areas. In general, the northern Tibetan Plateau acted as a carbon source while the ecosystems gradually become a carbon sink towards the south. There was also a general trend of carbon source to sink moving from west to east across the plateau.

DISCUSSION

We made extensive use of the observed carbon and nitrogen data and meteorological and ecological data in this region to examine how carbon dynamics have been affected by changes in climate and permafrost during the 20th century. This study represents the first effort to explicitly consider the effects of permafrost dynamics on carbon cycling in this region that is unique because of its diverse vegetation types, high altitudes and Asian monsoon climate. Below we first discuss our simulated carbon dynamics compared with other estimates. Second, we discuss how the regional carbon dynamics have been affected by changes in soil thermal and moisture regimes on the plateau as a whole. Finally we discuss how a set of gradients of altitudes, air temperature and precipitation influence carbon dynamics on different transects. Through the discussion, we strive to identify the key controls of carbon dynamics in the region.

Comparison between our simulated carbon dynamics and other studies

On the plateau, the net ecosystem carbon exchanges have only been observed at a few sites. For example, Kato et al. (2006) estimated that alpine meadow ecosystems sequestered carbon at a rate of 78.5 to 192.5 g C m$^{-2}$ year$^{-1}$ from 2002 to 2004 based on eddy covariance measurements. In comparison, TEM estimates a much lower grassland carbon sink of 28 g C m$^{-2}$ year$^{-1}$ during the 1990s over the whole plateau. In contrast, our estimated regional NPP is higher than other estimates ranging between 173 and 302 Tg C year$^{-1}$ (Piao & Fang, 2002; Wang et al., 2003; Zhou et al., 2004; Piao et al., 2006). On a per unit area basis,
Figure 3 Interannual variability on the Tibetan Plateau for (a) surface air temperature, (b) annual precipitation, (c) soil moisture, (d) soil temperature at top 20 cm depth, (e) maximum active layer depth, (f) net primary production (NPP), (g) net ecosystem production (NEP), (h) heterotrophic respiration (R_h), (i) soil carbon and (j) vegetation carbon. The dark thicker lines are 5-year running averages to show the trends.
TEM-simulated NPP is 330 g C m$^{-2}$ year$^{-1}$ on the Tibetan Plateau, which is close to the regional average of 301 g C m$^{-2}$ year$^{-1}$ estimated by Luo et al. (1998) and within the range of estimates of 220–810 g C m$^{-2}$ year$^{-1}$ for various ecosystems in the region by Ni (2000) using the BIOME3 model. Other estimates can reach 500 g C m$^{-2}$ year$^{-1}$ in the south-east and less than 50 g C m$^{-2}$ year$^{-1}$ in the north-west (Lu & Ji, 2002). Our estimated annual NPP persistently increases during the 1980s.
and 1990s (Fig. 3f). Similarly, Piao et al. (2006) found a similar trend with a rate of increase of 0.7% year\(^{-1}\) from 1982 to 1999. For GPP, Kato et al. (2004a) estimated GPP of the alpine meadow ecosystem as 575 g C m\(^{-2}\) year\(^{-1}\) compared with our estimates of 712 g C m\(^{-2}\) year\(^{-1}\) for grasslands. In comparison to the estimates based on MODIS data, our simulation tends to underestimate the annual GPP (Li et al., 2007).

TEM estimates of vegetation carbon were much higher than other existing estimates (Table 4). Luo et al. (1998) estimated that the Tibetan region has a total of 770 Tg C stored in a vegetated area of 1.1 million km\(^2\). Our much higher estimate of regional vegetation carbon is partially due to parameterization with limited observational data. Verification of the model and parameterization has already shown that the simulated vegetation carbon values in Gongga Mountain sites 4 and 6 are both significantly higher than observations (Fig. 1). The maximum value of 9830 g C m\(^{-2}\) appears in Luo et al. (1998) at Motuo in the south-east Tibetan Plateau, which is similar to our simulations for the same region (data not shown).

In contrast to vegetation carbon, our simulated soil carbon is much lower than the estimates of 33.5 Pg C at above 1 m soil depth in an area of 1.6 million km\(^2\) (Wang et al., 2002), and 38.4 Pg C at above 0.7 m soil depth in an area of 1.8 million km\(^2\) (Fang et al., 1996). Their studies indicated that most of the soil carbon was stored in alpine meadow and steppe soils. TEM simulations indicate that most soil carbon was stored in tall grasslands (Table 4). The underestimates of soil carbon are due to model parameterization, which was conducted using limited data for soil carbon. Site-level verification of the model and parameters has also indicated that the TEM significantly underestimated soil carbon at Haibei and Gongga Mountain site 6 (Fig. 1).

Due to lower values of soil carbon used in TEM simulations, the regional soil respiration of 416 Tg C year\(^{-1}\) is consequently much lower than the estimates of 1200 Tg C year\(^{-1}\) by Wang et al. (2002). This large discrepancy for regional soil respiration will apparently result in a large uncertainty in the regional net carbon budget. This suggests that the research priority should be directed to investigating the major controls on and processes of soil decomposition and carbon pool sizes as well as soil thermal and hydrological regimes under the changing climate conditions.

Impacts of soil thermal and moisture regimes on carbon dynamics on the Tibetan Plateau

On the plateau, the air temperature increased by 0.01 °C year\(^{-1}\) during the 20th century \((R^2 = 0.25, P < 0.01, n = 103)\). The annual air temperature reached −1.3 °C in the 1990s from −2.1 °C in the 1900s while annual precipitation remained at almost the same level during the century (Fig. 2a,b). Consequently, the annual soil temperature at 20 cm depth increased by 0.01 °C year\(^{-1}\) and soil moisture decreased by 1% per year. The increasing soil temperature resulted in an increase in regional NPP of 0.52 Tg C year\(^{-1}\) and was responsible for an increase in \(R\)\(_H\) of 0.22 Tg C year\(^{-1}\). These changes in NPP and \(R\)\(_H\) result in a regional sink of 0.3 Tg C year\(^{-1}\). These regional carbon dynamics are correlated with the changes in climate and soil temperature and moisture during the 20th century (Table 5). Our analysis further reveals that the carbon dynamics are significantly correlated with the net nitrogen mineralization rate in the region.

In particular, the correlations between NPP and NEP and NETNMIN are 0.94 and 0.93, respectively (Table 5). The warming air temperature increases soil temperature and thereby increases the soil decomposition rate and net nitrogen mineralization rate. Consequently, the increase in NETNMIN stimulates carbon uptake, promoting accumulation of vegetation and soil carbon in the region. Although the active layer depth has not significantly increased, its fluctuation due to changing climate is significantly correlated with carbon fluxes in the region (Table 5). Due to differential rates of regional NPP and \(R\)\(_H\) with increasing air temperature, the region tends to become a stronger carbon sink under warming conditions.

When soil thermal effects are not considered, NPP and \(R\)\(_H\) are modelled as functions of air temperature instead of the simulated soil temperature. Since air temperature is lower than soil temperature in spring and autumn, the simulated net nitrogen mineralization and uptake are lower, leading to a lower gross primary production and NPP. The warmer summer air
temperature stimulates soil respiration and nitrogen mineralization, providing more available nitrogen and leading to a higher NPP. However, the differences of the effects of air temperature and soil temperature on NPP are small in summer. As a result, the lower annual NPP and higher R_H leads to a smaller carbon sink (Table 4).

Influences of altitude, temperature and moisture gradients on carbon dynamics

On the plateau, air temperature and precipitation increase from north to south and from west to east, influenced by the Asian monsoon climate and local topography. To examine how the climate gradients affect soil temperature and moisture regimes and in turn affect carbon dynamics, we selected an east–west transect along the latitude of 30° N and a south–north transect along the longitude of 92° E. On the east–west transect, the elevation drops from 5000 to 3000 m in the east, annual air temperature increases from $-3^\circ C$ in the west to $8^\circ C$ in the east, while annual precipitation also increases from 600 to 800 mm. These changes resulted in an increase in soil temperature of about $6^\circ C$, but soil moisture decreases to some extent due to higher evapotranspiration from west to east. Consequently, NPP, R_H and NEP increased along the climate and altitude.
Our statistical analysis indicates that the climate and altitude gradients are significantly correlated with the carbon dynamics in this transect (Table 6). The air temperature gradient exerts more influence than precipitation, while soil temperature and moisture have similar influences on carbon dynamics. NETNMIN increases from west to east, primarily due to the increase in soil temperature in this transect, which in turn stimulates uptake of carbon by vegetation. In addition, changes in the active layer depth of this transect remain a key factor here (Table 6).

On the south–north transect, the elevation increases from 3000 to 5000 m and then drops to 3000 m from south to north, annual air temperature decreases from 15 to ~5 °C and then increases to 5 °C, while precipitation shows a sharp gradient with extremely low precipitation in the north. The annual soil temperature at 20 cm depth follows the air temperature trend and decreases from 10 to ~5 °C and then increases to above 0 °C. Soil moisture dramatically drops by 20% in the north. Carbon dynamics are intimately coupled with the trends of climate and soil variables (Table 6). On this transect, carbon dynamics are correlated well with latitude ($R^2 > 0.48$, $P < 0.01$, $n = 169$). Similar to the east–west transect, the altitude is also a major factor on the south–north transect, suggesting the importance of considering elevation information in carbon cycling studies in the region (Table 6). Soil thermal and moisture regimes significantly affect the soil decomposition and NETNMIN, inducing carbon release from soils and stimulating carbon uptake by vegetation. Our simulations generally agree with other studies, indicating that NPP decreases from south-east to north-west due to the decreasing trend of air temperature and moisture (e.g. Piao & Fang, 2002). In contrast to the east–west transect, the active layer depth is not highly correlated with NPP and R_{H} dynamics in the south–north transect, but is significantly correlated with NEP dynamics (Table 6). Overall, our analysis is consistent with other findings, stating that the air temperature and precipitation are controlling factors for carbon storage on the Tibetan Plateau (Luo et al., 2002). However, our study takes a further step to reveal that the changes in soil thermal and moisture conditions induced by climate change affect soil decomposition and the nitrogen mineralization processes, thereby controlling carbon dynamics in the region.

CONCLUSION

We used a process-based biogeochemistry model, TEM, to examine the changes of permafrost status and carbon cycling on the Tibetan Plateau. We first parameterized the TEM with the field data and then verified our parameterization and model using the observed data. The model and parameters were then extrapolated to the region. We find that the model is able to reproduce the distribution of permafrost on the plateau. Our simulations indicate that the region acted as a carbon sink of 36 Tg C year$^{-1}$ in the 1990s. During the 20th century, the regional carbon dynamics showed a large inter-annual and spatial variability due to changes in climate and soil thermal and moisture regimes. Our analyses suggest that the warming temperature in this region promoted the strength of the carbon sink and shifted seasonal carbon dynamics during the century. Along the east–west transect, the NPP, soil respiration and net ecosystem productivity generally increased, primarily due to the increase in air temperature and precipitation and decrease in elevation. In contrast, the decreased carbon fluxes from south to north were primarily controlled by the precipitation gradient on the south–north transect. Our study implies that future warming will increase thawing of the permafrost, increase soil temperature and dry up soil moisture. These physical dynamics may enhance future strength of the regional carbon sink, since the rate of increase of NPP is higher than that of soil respiration on the Tibetan Plateau. Further, our study indicates that the future quantification of regional carbon dynamics in this climate-sensitive region should take the effects of soil thermal dynamics into account.

Table 6 Pearson correlations between carbon fluxes and physical and chemical variables in the east–west transect (along the latitude 30 °N) and the south–north transect (along the longitude 92 °E) on the Tibetan Plateau.

<table>
<thead>
<tr>
<th></th>
<th>Longitude/latitude</th>
<th>Elevation</th>
<th>Air temperature</th>
<th>Precipitation</th>
<th>Soil temperature</th>
<th>Soil moisture</th>
<th>Maximum active layer depth</th>
<th>Net N mineralization</th>
</tr>
</thead>
<tbody>
<tr>
<td>East–west transect</td>
<td>NPP</td>
<td>0.51**</td>
<td>−0.57**</td>
<td>0.62**</td>
<td>−0.03</td>
<td>0.60**</td>
<td>−0.40**</td>
<td>0.49**</td>
</tr>
<tr>
<td>(233 grid cells)</td>
<td>RH</td>
<td>0.45**</td>
<td>−0.54**</td>
<td>0.59**</td>
<td>−0.07</td>
<td>0.56**</td>
<td>−0.42**</td>
<td>0.48**</td>
</tr>
<tr>
<td></td>
<td>NEP</td>
<td>0.65**</td>
<td>−0.59**</td>
<td>0.65**</td>
<td>0.20*</td>
<td>0.64**</td>
<td>−0.20*</td>
<td>0.44**</td>
</tr>
<tr>
<td>South–north transect</td>
<td>NPP</td>
<td>−0.75**</td>
<td>0.44**</td>
<td>0.16*</td>
<td>0.64**</td>
<td>0.15*</td>
<td>0.65**</td>
<td>−0.08</td>
</tr>
<tr>
<td>(169 grid cells)</td>
<td>RH</td>
<td>−0.74**</td>
<td>0.41**</td>
<td>0.20*</td>
<td>0.65**</td>
<td>0.20*</td>
<td>0.60**</td>
<td>−0.04</td>
</tr>
<tr>
<td></td>
<td>NEP</td>
<td>−0.50**</td>
<td>0.52**</td>
<td>−0.31**</td>
<td>0.29**</td>
<td>−0.31**</td>
<td>0.77**</td>
<td>−0.39*</td>
</tr>
</tbody>
</table>

* $P < 0.05$, ** $P < 0.01$. The values for variables are annual averages for the 1990s except for latitude, longitude and elevation. NEP, NPP and R_{H} are net ecosystem production, net primary production and heterotrophic respiration, respectively. 'On' indicates that the Terrestrial Ecosystem Model (TEM) simulation has considered the effects of permafrost dynamics while 'Off' indicates that the effects have not been considered.
ACKNOWLEDGEMENTS

This study is supported by Q. C. Wong’s research fund. The research is also supported in part by the National Science Foundation (NSF-0554811) and the National Nature Science Foundation of China (project no. 40701008). The high-performance computing for this research was provided by the Rosen Center for Advanced Computing at Purdue University.

REFERENCES

SUPPORTING INFORMATION

Additional Supporting Information may be found in the online version of this article:

Appendix S1 Values and sources for estimated pools and fluxes used to parameterize the ecosystem models.

As a service to our authors and readers, this journal provides supporting information supplied by the authors. Such materials are peer-reviewed and may be re-organized for online delivery, but are not copy-edited or typeset. Technical support issues arising from supporting information (other than missing files) should be addressed to the authors.

BIOSKETCHES

Qianlai Zhuang (PhD, University of Alaska Fairbanks) is an associate professor in the Department of Earth and Atmospheric Sciences and Department of Agronomy at Purdue University, West Lafayette, IN. His research interests focus on studying biogeochemical dynamics with process-based biogeochemistry models.

Editor: Wolfgang Cramer