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Abstract. This study evaluated whether a model of permafrost dynamics with a 0.5-day
resolution internal time step that is driven by monthly climate inputs is adequate for
representing the soil thermal dynamics in a large-scale ecosystem model. An extant version
of the Goodrich model was modified to develop a soil thermal model (STM) with the
capability to operate with either 0.5-hour or 0.5-day internal time steps and to be driven with
either daily or monthly input data. The choice of internal time step had little effect on the
simulation of soil thermal dynamics of a black spruce site in Alaska. The use of monthly
climate inputs to drive the model resulted in an error of less than 1°C in the upper organic
soil layer and in an accurate simulation of seasonal active layer dynamics. Uncertainty
analyses of the STM driven with monthly climate inputs identified that soil temperature
estimates of the upper organic layer were most sensitive to variability in parameters that
described snow thermal conductivity, moss thickness, and moss thermal conductivity. The
STM was coupled to the Terrestrial Ecosystem Model (TEM), and the performance of the
coupled model was verified for the simulation of soil temperatures in applications to a black
spruce site in Canada and to white spruce, aspen, and tundra sites in Alaska. A 1°C error in
the temperature of the upper organic soil layer had little influence on the carbon dynamics
simulated for the black spruce site in Canada. Application of the model across the range of
black spruce ecosystems in North America demonstrated that the STM-TEM has the
capability to operate over temporal and spatial domains that consider substantial variation in
surface climate given that spatial variability in key structural characteristics and physical

properties of the soil thermal regime are described.

1. Introduction

There is evidence that warming is occurring in some high-
latitude areas [Beltrami and Mareschal, 1991; Chapman and
Walsh, 1993; Osterkamp and Romanovsky, 1999; Serreze et
al., 2000]. Ground temperature records for North America
reconstructed from borehole temperature logs support the no-
tion that large-scale warming has been occurring since the
19th century [Lachenbruch et al., 1982; Lachenbruch and
Marshall, 1986]. Over the last few hundred years, permafrost
conditions in the Arctic have changed and are likely to con-
tinue changing [Overpeck et al., 1997]. In the western boreal
forest of Canada, permafrost has responded dynamically to
climatic changes that have been occurring since the little ice
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age [Vitt et al., 2000]. The soil thermal regime and the distri-
bution of permafrost in regions with discontinuous permafrost
are especially sensitive to climate changes [Osterkamp and
Romanovsky, 1999; Brown, 1960; Halsey et al., 1995].

Although warming is occurring in high latitudes, some
high-latitude regions are warming, other regions are cooling,
and there is substantial interannual variability in climate
across high latitudes [Everett and Fitzharris, 1998]. Projec-
tions of climate trends for high-latitude regions exhibit sub-
stantial temporal and spatial heterogeneity [McGuire et al.,
2000a], and this variability is expected to influence the
structure and function of high-latitude ecosystems [McGuire
and Hobbie, 1997; Epstein et al., 2000; McGuire et al.,
2000a]. The response of carbon dynamics in high-latitude
ecosystems, which contain approximately 40% of the reactive
soil carbon in the terrestrial biosphere [McGuire et al., 1995],
to spatial and temporal variability in climate is of concern be-
cause the response has the potential to influence CO9 con-
centrations in the atmosphere [Oechel et al., 1993; McGuire
and Hobbie, 1997; McGuire et al., 2000a].
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A number of studies have indicated that permafrost dy-
namics may substantially influence carbon storage [Vitt et al.,
2000] and carbon dynamics [Hillman, 1992; Waelbroeck et
al., 1997; Goulden et al., 1998] of high-latitude ecosystems.
Goulden et al. [1998] suggested that the stability of the soil
carbon pool at a black spruce site in Canada appears sensitive
to the depth and duration of thaw, and climatic changes that
promote thaw are likely to cause a net efflux of carbon diox-
ide from the site. On the other hand, warming may not always
lead to C losses [Shaver et al., 1992; McGuire et al., 1992,
2000a, 2001; Oechel et al., 2000; Clein et al., 2000, in press],
and it is not clear if high-latitude ecosystems are presently
storing or releasing carbon or if there is interannual variability
in the source-sink activity of high latitudes [Chapin et al.,
2000].

Large-scale ecosystem models have been developed to
simulate the carbon dynamics of the terrestrial biosphere
[McGuire et al., 2001]. Given that permafrost dynamics are
currently changing in high latitudes and are likely to continue
changing as the climate warms, it is important for these mod-
els to consider how changes in the soil thermal regime influ-
ence ecosystem structure and function. Although it has been
demonstrated that representing the insulative effects of snow-
pack on the soil thermal regime improves the ability of large-
scale ecosystem models to reproduce seasonal features of at-
mospheric CO2 concentrations at high-latitude monitoring
stations [McGuire et al., 2000b], these models have been
slow to integrate a consideration of permafrost into their dy-
namics.

Site-specific models of permafrost dynamics often simulate
soil thermal dynamics based on a two-dimensional finite ele-
ment or finite difference formulation [Osterkamp and Gosink,
1991; Guymon and Hromadka, 1977; Guymon et al., 1984;
Romanovsky et al, 1991a, 1991b; Garagulya et al., 1995].
These models typically use a fine-resolution internal time step
(e.g., 0.5 hours) and fine resolution depth steps in the soil
(e.g., 1 cm to 5 cm resolution depending on depth), and are
driven by daily or subdaily resolution climate data. In con-
trast, large-scale ecosystem models are generally driven by
monthly climate inputs [Heimann et al., 1998; Cramer et al.,
1999; Kicklighter et al., 1999; McGuire et al., 2000a, 2000b,
2001]. Although a permafrost model with a fine internal time
step driven by fine resolution climate data has obvious nu-
merical advantages in comparison to a model with coarser
resolution, it imposes a substantial computational time cost
on the coupled model.

In this study we address the question whether a model of
permafrost dynamics with a coarse resolution internal time
step (0.5 days) that is driven by monthly climate inputs is
adequate for representing soil thermal dynamics in large-scale
ecosystem models that are driven by monthly climate inputs.

2. Methods

2.1. Overview

In this study we modified an extant version of the Goodrich
model [Goodrich, 1976, 1978a, 1978b] for Alaskan ecosys-
tems [Romanovsky et al., 1997] to develop a soil thermal
model (STM) with the capability to operate with either 0.5-
hour or 0.5-day internal time steps and to be driven by either
daily or monthly input data. On the basis of empirical data,
calibration, and review of the scientific literature, we speci-
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fied parameters of the model for a black spruce forest stand
located in the Bonanza Creek Experimental Forest near Fair-
banks, Alaska, where soil and air temperatures were measured
from May 1996 to April 1997. We applied the model in a
factorial fashion to this site with respect to the temporal
resolutions of internal time step (0.5 hours and 0.5 days) and
input data (daily and monthly). To provide monthly inputs to
the model, we aggregated air temperature and snow depth to
monthly resolution. We evaluated the performance of the
factorial applications of the model by comparing simulated .
daily and monthly soil temperature to measurements of soil
temperature at different depths. To evaluate issues of tempo-
ral scaling, we also analyzed differences among the factorial
applications to determine the relative importance of internal
time step and climate inputs to the differences. To evaluate
spatial scaling issues, we conducted uncertainty analyses that
allowed us to determine which parameters need to be de-
scribed in a spatially explicit fashion for spatial application of
the model. For application of the model to larger spatial
scales, we coupled the STM with the Terrestrial Ecosystem
Model (TEM) [Xiao et al., 1998; Tian et al., 1998, 1999,
2000; Kicklighter et al., 1999; Schimel et al., 2000; McGuire
et al., 2000a, 2000b, 2001; Clein et al., 2000, in press; Am-
thor et al., this issue], which provides the STM with monthly
estimates of snowpack dynamics. To evaluate the perform-
ance of the coupled model for different vegetation types in
high latitudes, we verified simulations of soil temperature by
the model for white spruce, aspen, and tundra sites in Alaska
in addition to a black spruce site in Canada. To determine
whether it is appropriate to use simulated soil temperatures to
drive ecosystem processes, we compared field-based and
simulated estimates of carbon fluxes for the black spruce site
in Canada. Finally, to evaluate the ability of the model to op-
erate across a substantial spatial and temporal domain, we ap-
plied the black spruce parameterization of the coupled STM-
TEM model to the range of black spruce forest ecosystems
across North America.

2.2. Model Development

The Goodrich model is a one-dimensional finite difference
model of heat flow in soils which considers phase changes
between water and ice and includes the thermal effects of
changes in snow depth and snow characteristics during the
winter [Goodrich 1976, 1978a, 1978b]. The model simulates
the thermal dynamics of a system that includes snow cover,
thawed soil, and frozen soil in which the upper and lower
boundaries of the system are specified. Soil thermal dynam-
ics of the system are determined through finite difference cal-
culations between specified depth steps within each of the
major layers of the system.

In our modification of the Goodrich model, which we refer
to as the soil thermal model (STM) in this study, the vertical
profile is divided into snow cover, moss, upper organic soil,
lower organic soil, and mineral soil layers (Figure 1a). Ap-
plication of the model for a site requires specification of the
thickness of each layer and simulation depth steps within
each layer. The thermal properties of each layer also need to
be prescribed. In addition, the dynamics of phase changes in
the soils depend on the phase temperature, which we set to
00C for applications of the model in this study. Specification
of the upper boundary condition includes the temperature at
the top of the moss layer during the summer and at the sur-
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Figure 1. (a) Structure of the soil thermal model (STM) in
the study. Heat conduction, H(t), is modeled as a function of
time (t) within the snow, moss, organic soil, and mineral soil
layers. The frozen and thawed phase boundaries move up and
down during the simulation. Input data for driving the model
include temporal variability in temperature or heat fluxes for
upper and lower boundaries and in the depth of snow. The
model simulates soil temperature at each depth with daily
resolution. (b) Flow of data in the coupled model (STM-
TEM), in which the STM receives information on vegetation
and the depth of snowpack from the water balance model
(WBM) of the terrestrial ecosystem model (TEM), and TEM
receives information on soil temperature for driving soil bio-
geochemical processes.

face of snow during the winter. In this study we prescribed
the depth, density, and thermal properties of snow cover. For
the lower boundary condition we assumed a constant heat
flux. Alternatively, the lower boundary condition can be
specified as a temporally varying function of temperature or
heat flux. Application of the model requires the prescription
of initial conditions, which include specifying the initial soil
temperatures of the system and the presence or absence of
permafrost.

To drive the model with daily inputs the model linearly in-
terpolates to 0.5-hour or 0.5-day resolution with three se-
quential days of data on daily air temperature and snow depth
for the current day, the previous day, and the next day.
Similarly, to drive the model with monthly inputs, the model
linearly interpolates data on monthly air temperature and
snow depth for the current month, the previous month, and
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the next month. For example, to determine air temperature
data for the model's internal 0.5-day time step in November,
approximately 60 points are linearly interpolated between
mean monthly October and November air temperature to de-
termine the 30 points for the first half of November, and ap-
proximately 60 points are interpolated between mean monthly
November and December air temperature to determine the 30
points for the second half of November.

2.3. Evaluation of STM Performance

2.3.1. Parameterization. We specified the parameters of
the STM for a black spruce stand in the Bonanza Creek Ex-
perimental Forest near Fairbanks, Alaska, based on empirical
data, calibration, and review of the scientific literature. The
ground layer of this stand is covered by a nearly continuous
layer of feather moss (Hylocomium Splendens and Pleu-
rozium Shreberi). The distribution of permafrost and the ac-
tive layer thickness is consistently uniform across the stand.
Observed data for the stand include measurements of daily air
temperature and daily soil temperatures at different depths (0,
23, 32, 42, and 52 cm, where 0 cm is the top of the moss
layer) from May 1996 to April 1997.

In the STM we set the lower-boundary condition for this
stand to a constant geothermal heat flux of 0.05 W m-2
[Osterkamp and Romanovsky, 1999]. Within each layer, we
calculated the soil thermal dynamics for 10 depth steps within
the snow layer, for 3.5 cm depth steps within the 12 cm of
living and dead moss layer, for 2.5 cm depth steps within the
28 cm of upper organic soil layer, for 2 cm depth steps within
the 64 cm of the lower organic soil layer, for 10 cm depth
steps within the first 40 cm of the mineral soil layer, and for
50 cm depth steps down to the lower boundary of the mineral
soil layer, which in our simulations was located at the 10 m
depth from the top of the moss layer. We set the snow ther-
mal conductivity to 0.2 W m-1 K-1. The thawed soil thermal
conductivity, frozen soil thermal conductivity, and water
content and heat capacity for the moss, organic soil, and min-
eral soil layers are documented in Table 1.

2.3.2. Model Simulations. To evaluate the performance of
the STM with either 0.5-hour or 0.5-day internal time steps
and with either daily or monthly climate inputs, we conducted
simulations of the soil thermal regime for the black spruce
stand at Bonanza Creek between May 1996 and April 1997 in
a two-factor design that considered different combinations for
the temporal resolutions of internal time step and input data
(Figure 2): (Simulation I) 0.5-hour internal time step and
daily inputs; (II) 0.5-day internal time step and daily inputs;
(1IT) 0.5-hour internal time step and monthly inputs; and (IV)
0.5-day internal time step and monthly inputs. The inputs of
daily air temperature (Figure 3a) and snow depth (Figure 3b)
for simulations I and II were obtained from measurements
made at the Fairbanks International Airport weather station.
To provide monthly inputs for simulations III and IV, we cal-
culated monthly means from the daily air temperature and
snow depth data used in simulations I and I1. Soil tempera-
tures can be output by the STM at the resolution of the inter-
nal time step. For each of the simulations we calculated mean
daily and mean monthly soil temperature at several depths in
the system profile (0, 23, 32, 42, and 52 c¢m, where 0 cm is
the top of the moss layer) for comparison with observed mean
daily and monthly soil temperature at corresponding depths in
the correlation and regression analyses. In addition to evalu-



Table 1. Parameters Used for Simulations of the Soil Thermal Model (STM) for a Black Spruce Stand at the Bonanza Creek Experimental Forest (BNZ) Near
Fairbanks, Alaska and the Coupling of the STM with the Terrestrial Ecosystem Model (STM-TEM) for a Black Spruce Stand in Canada (NSA-OBS), and White
Spruce (WS), Aspen (AS), and Tussock Tundra (TT) sites in Alaskaa

Normal Value
Parameter Description BNZ NSA-OBS WS AS TT Minimum  Maximum Unit
Code

\% Moss thickness 0.12 (0.035)b 0.10 (0.05) 0.15(0.15)  0.15(0.15) 0.20 (0.10) 0.05 0.35 Meter (m)

\P Upper organic soil thickness 0.28 (0.025) 0.20 (0.05) 0.15(0.15)  0.15(0.15) 0.20 (0.15) 0.15 0.50 Meter (m)

V3 Lower organic soil thickness 0.64 (0.020) 0.15(0.10) 0.30 (0.30)  0.30(0.30) 0.40 (0.15) 0.20 0.65 Meter (m)

V4 Upper mineral soil thickness 0.40 (0.100) 0.85(0.10) 0.60 (0.30)  0.30(0.30) 0.90 (0.30) 0.40 2.00 Meter (m)

V5 Moss thawed thermal conductivity  0.10 0.20 0.45 0.50 0.15 0.10 0.50 W m-1 K-1

V6 Moss frozen thermal conductivity — 0.12 0.31 0.56 1.20 0.26 0.12 1.20 W m-1 K-1

\'% Upper organic soil thawed 0.30 0.20 1.20 1.00 0.70 0.20 1.20 W m-1 K-
thermal conductivity

A% Upper organic soil frozen 0.68 0.31 1.50 1.50 1.50 0.30 1.50 W m-1 K-1
thermal conductivity '

A\ Lower organic soil thawed 0.50 0.50 1.40 1.20 0.70 0.40 1.40 W m-t K-
thermal conductivity

V10 Lower organic soil frozen 1.60 1.0 2.10 2.10 1.50 0.60 2.20 W m-1 K-1
thermal conductivity

V11 Upper mineral soil thawed 0.75 0.50 1.40 1.20 1.20 0.50 1.60 W m-! K-
thermal conductivity

V12 Upper mineral soil frozen 1.60 1.00 2.10 2.10 2.10 1.00 2.50 W m-1 K-1
thermal conductivity

V13 Moss water content 0.04 0.08 0.44 0.10 0.65 0.03 0.60 Volumetric %

V14 Upper organic soil water 0.65 0.20 0.10 0.10 0.10 0.10 0.70 Volumetric %
content

V15 Lower organic soil water 0.65 0.08 0.33 0.19 0.10 0.08 0.65 Volumetric %

content
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Table 1. Continued

Normal Value
Parameter Description BNZ NSA-OBS WS AS T Minimum  Maximum Unit
Code

V16 Upper mineral soil water 0.45 0.20 0.33 0.23 0.43 0.10 0.45 Volumetric %
content

V17 Moss thawed volumetric 1.70 1.70 1.20 1.50 1.50 1.20 3.50 MJ m-1 K-1
heat capacity

V18 Moss frozen volumetric 1.50 1.50 1.00 1.20 1.20 1.00 3.50 MJ m-1 K-1
heat capacity

V19 Upper organic soil thawed 1.70 1.70 2.40 2.30 1.30 1.30 2.50 MJ m-1 K-1
heat capacity

V20 Upper organic soil frozen 1.60 1.50 2.20 2.20 1.20 1.20 3.50 MJ m-1 K-1
heat capacity

V21 Lower organic soil thawed 2.60 1.70 2.80 2.10 1.30 1.50 3.50 MJ m-1 K-1
heat capacity

V22 Lower organic soil frozen 1.60 1.50 1.70 1.70 1.20 1.50 3.50 MJ m-1 K-1
heat capacity

V23 Upper mineral soil thawed 2.60 2.60 2.80 3.10 3.10 1.50 3.50 MJ m-1 K-1
heat capacity

V24 Upper mineral soil frozen 1.60 2.40 1.70 1.70 1.70 1.50 3.50 MJ m-1 K-1
heat capacity

V25 Snow thermal conductivity 0.20 0.20 0.15 0.17 0.20 0.10 0.30 MJ m-1 K-!

aThe uncertainty analyses were conducted for the BNZ black spruce site. In uncertainty analyses, parameters were varied within the minimum and maximum values shown here under the

assumption of a uniform random distribution.

bThe numerical value following the thickness of each layer was the depth step of the simulation.
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Figure 2. Research design for evaluating performance of the
STM with respect to the temporal resolutions of internal time
step and climate inputs. The performance was evaluated for a
black spruce ecosystem in Bonanza Creek site (BNZ) of
Long-Term Ecological Research (LTER). Monthly input cli-
mate data for simulations III and IV were temporally aggre-
gated from daily air temperature and snow depth. For com-
parisons between observed and simulated monthly soil tem-
peratures, daily observed and simulated soil temperatures
were aggregated. All simulations use the same parameters and
initialization protocol.

ating performance at various depths of the system, we also
evaluated the performance of the model to simulate the ag-
gregated temperature within the upper organic layer, which is
an important region for biological activity in the soil. The
soil temperature in the upper organic layer (Tyo™) at time m
is obtained by linearly aggregating soil temperatures simu-
lated at 2.5 cm depth steps throughout the 28 cm of the upper
organic layer:

=k j=k
Z @ XM ZX0) (M

) J
=0 j=0

(m
oo
j

Where T(m,j) is the soil temperature at time m and node j,
X(n) is soil depth at node n, and £ is the number of nodes
within the upper organic layer with the zero node located at
the boundary between the moss and the upper organic layer
and the £ node located at the boundary between the upper and
the lower organic layers. We also calculated the root-mean-
square deviation (DrMs) of each soil depth and for the upper
organic layer as well as active layer depths between each
combination of the four simulations so that we could assess
whether simulated soil temperature and active layer depth
were more influenced by changing the resolution of the inter-
nal time step or by changing the resolution of the input data.
We calculated Drs as

i=n

2
Z(T: - TT:) )

Denge = | i=1
RMS "
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Where 7; and T7; are daily or monthly soil temperatures for
each pair of simulations, i is simulation day or month, and »
is number of days or months.

2.4. Uncertainty Analyses

Uncertainty analysis relates the variability in model predic-
tions to uncertainty in the parameters of the model [Turner et.
al., 1994]. In this study we conducted uncertainty analyses for
the version of the model that used 0.5-day internal time step
and monthly inputs to identify which parameters need to be
specified for spatial application of the model. Our analysis
focused on evaluating the parameter uncertainty of the simu-
lated mean monthly temperatures aggregated for the upper
organic layer between May 1996 and April 1997. Simple
Pearson correlation coefficients (R) were calculated between
each of the parameters and the model predictions. We used
the squared Pearson correlation coefficient (R2), which is the
percentage of the total variance in an output variable of the
model that was explained by variability in a particular pa-
rameter, as our index of uncertainty. If the parameters consid-
ered in the uncertainty analysis are independent of each other,
then the squared Pearson correlation coefficient can be used
as a sensitivity measure [Rose et al., 1991]. The sum of the
sensitivity measures quantifies the proportion of the total
variance of the model prediction that relates linearly to varia-
tion in the parameter [Bartell et al., 1988].

To examine how the uncertainty relationships between
output variables and parameters potentially depend on cli-
mate, we evaluated another eight climate scenarios in addition
to the normal climate scenario defined by the observed air
temperature and snow depth at the site (Table 2). For sce-
narios that considered higher or lower air temperature and
which considered shallower and deeper snow depths, we ma-
nipulated air temperature and snow depth by increasing or de-
creasing by 20% the monthly mean air temperature and snow
depth derived from the data measured at Fairbanks Interna-
tional Airport between May 1996 and April 1997. For each
uncertainty analysis we obtained the 100 values of each pa-
rameter for the analysis by randomly drawing from a uniform
random distribution over the possible range for each parame-
ter (see Table 1). In the uncertainty analyses we considered
all parameters in Table 1 except for the parameters that de-

Table 2. Combinations of Different Air Temperature and Snow
Depth Scenarios for the Study of the Uncertainty Analyses for
Simulations of Soil Temperature by the Soil Thermal Model
(STM) for the Black Spruce Ecosystem at Bonanza Creek
Experimental Forest near Fairbanks, Alaska

Code Description
LT-SS Lower temperature and shallower snow depth
LT-NS Lower temperature and normal snow depth
LT-DS Lower temperature and deeper snow depth
NT-SS Normal temperature and shallower snow depth
NT-NS Normal temperature and normal snow depth
NT-DS Normal temperature and deeper snow depth
HT-SS Higher temperature and shallower snow depth
HT-NS Higher temperature and normal snow depth
HT-DS Higher temperature and deeper snow depth
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Figure 3. (a) Air temperature and (b) snow depth for the black spruce ecosystem at Bonanza Creek Experimental

Forest from May 1996 to April 1997.

fined the water content of the lower organic and mineral soil
layers because we were interested in evaluating the sensitivity
to water content in the moss and upper organic layers. Corre-
lation analysis among the parameters indicated that the pa-
rameters were statistically independent, as all R2 values were
less than 0.094 between pairs of parameters.

2.5. Evaluation of STM-TEM Performance for Different
Ecosystem Types

We coupled the STM with version 4.2 of the Terrestrial
Ecosystem Model (TEM) [McGuire et al., 2001], which in-
cludes hydrology derived from the water balance model of
Vorosmarty et al. [1989] and provides spatially distributed
snow depth estimates based on precipitation inputs. In the
coupled model (STM-TEM), the STM operates with an inter-
nal 0.5-day time step and monthly inputs of air temperature
and snow depth. The snow depth is calculated by a specified
snow density and snow water equivalent, which is provided
from the simulation of hydrology by TEM (Figure 1b). We
verified soil temperatures simulated by STM-TEM for four
sites that represent the structural diversity of ecosystems that
occur throughout high latitudes. These sites include a black
spruce site in Canada and white spruce (Picea glauca), aspen

(Populus tremuloides), and tussock tundra (Eriophorum
Vaginatum) sites in Alaska (Table 3).

The black spruce site in Canada is the old black spruce
(OBS) site of the northern study area (NSA) of the Boreal
Ecosystem-Atmosphere Study [Sellers et al, 1997]. The
white spruce ecosystem is a 100-year old forest located on a
south-facing slope in the Bonanza Creek Experimental Forest
with a silt-loam soil that contains permafrost. The aspen eco-
system is a 100-year old forest in the Bonanza Creek Experi-
mental Forest with a silt-loam soil that contains no perma-
frost. The tussock tundra site is located near the Toolik Lake
field station on a site with an organic soil that contains perma-
frost. We defined the profile of the system and parameters of
STM-TEM for each of these sites based on physical proper-
ties of soils for each site (Table 1). The presence or absence
of permafrost is prescribed through the initial temperature
profile at each site. For application of the STM-TEM to these
sites, we conducted simulations from 1975 to 1997 and com-
pared the simulated and observed monthly soil temperatures
at different depths for a period of time near the end of the
simulations. The monthly climate data for driving the STM-
TEM were determined from data measured at local weather
stations or study sites (Table 3).
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Table 3. Applications of the Coupled Model (STM-TEM) in Which the Soil Thermal Model (STM) Was
Coupled to the Terrestrial Ecosystem Model (TEM), to Simulate Soil Temperature for Four Different
Representative Ecosystem Types in High-Latitude Regions of North America

Vegetation Stand Location  Driving Data Depths of Soil Tempera- Reference
Type tures Simulated and Ob-
served
Black spruce Northern study ~ Thompson airport 5,20, 20, 50, and 100 cm, Sellers et al., [1997]

area (NSA) weather station, data
near Mani- from 1975 to 1997
toba, Can-
ada

White spruce 333 mile Parks  Field-based air tempera-
Highway, ture from 1994 to 1997
Fairbanks, precipitation data from
Alaska the Fairbanks Interna-

Aspen

20 mile Chena

tional Airport weather
station in period 1994
to 1997

Field-based air tempera-

Hot Springs ture from 1994 to 1997

Rd., Fair- precipitation data from

banks, the Fairbanks Interna-

Alaska tional Airport weather
station in period 1974
to 1997

Tussock tundra  Toolik Lake For period of 1995 to

tussock tun- 1997, measured air

dra site of temperature at the site,

Arctic Long- measured precipitation

Term Eco- at Bettles FAA Airport

logical Re-

search

(LTER),

Alaska

depths relative to the sur-
face of moss

Soil surface, 15, and 30 cm,
s depths are relative to the
surface of moss and lichen

R. E. Erickson, personal
communication, 1999

Same as white spruce site R. E. Erickson, personal
R communication, 1999

10, 20, 35, and 40 c¢m,
depths are relative to the
surface of moss layer

G. Shaver, personal
communication, 1999

2.6. Evaluation of Carbon Fluxes for a Black Spruce
Forest

In the STM-TEM, monthly soil temperature of the upper
organic layer is used to drive the processes of decomposition
and gross nitrogen mineralization in the simulation by the
model (Figure 1b). To evaluate the performance of the model
in simulating ecosystem carbon fluxes, we parameterized the
STM-TEM for a black spruce forest site at the Bonanza Creek
Experimental Forest, Alaska similar to the procedures de-
scribed by Clein et al. [in press; see also Amthor et al., this is-
sue] and applied the model to simulate carbon dynamics for
the black spruce site in Canada. To evaluate how uncertainty
in simulated soil temperatures might influence estimates of
carbon dynamics by the STM-TEM, we simulated carbon
fluxes for two additional soil temperature scenarios. We ma-
nipulated the baseline simulated soil temperature of the upper
soil organic layer (scenario B) by increasing (scenario I) or
decreasing (scenario D) monthly temperatures of the layer by
10C and compared simulated carbon fluxes among these soil
thermal scenarios. The carbon fluxes we evaluated include
monthly gross primary production (GPP), which is the
amount of carbon taken up by the vegetation through the pro-
cess of photosynthesis, and monthly ecosystem respiration
(RESP), which is the amount of carbon released to the atmos-
phere through respiration by the vegetation and through de-
composition of soil organic matter. Net ecosystem produc-
tion (NEP), which represents the net exchange of carbon with

the atmosphere is calculated as the difference between GPP
and RESP. Increases in ecosystem carbon storage are indi-
cated by positive values of NEP, while decreases in carbon
storage are indicated by negative values of NEP.

2.7. Application to the Range of Black Spruce Ecosystems
across North America

To evaluate the ability of the STM-TEM to operate at large
temporal and spatial scales, we applied the black spruce pa-
rameterization of the model for the NSA-OBS black spruce
site to simulate soil thermal dynamics for the range of black
spruce forest ecosystems across North America north of 500N
from 1900 to 2100. The climate data for the historical period
(1900 to 1994) were developed at 0.50 spatial resolution by
the Max Planck Institute for Meteorology (M. Heimann, un-
published data, 2000) by interpolating the monthly tempera-
ture anomalies of Jones [1994] and the monthly precipitation
anomalies of Hulme [1995] to 0.50 resolution and then adding
them to the long-term monthly air temperature and precipita-
tion in the Cramer-Leemans CLIMATE database, which is an
update of Leemans and Cramer [1991] database. The climate
data for the projected period (1995 to 2100) were based on
monthly temperature and precipitation ramps defined from a
transient simulation of the Hadley Center CM2 model. The
CM2 simulation we used considered the radiative forcing as-
sociated with the combined effects of changes in greenhouse
gases and sulphate aerosols [Mitchell et al., 1995]. The meth-
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Table 4. Slope, Intercept, and Proportion of Variation (R2) Explained by Linear Regressions Between
Field-Based and Simulated Daily and Monthly Soil Temperatures at Various Depths and Active Layer
Depths for Simulations I, II, III, and IV of the Black Spruce Stand at Bonanza Creek Experimental

Forest from May 1996 to April 1997a

Daily Soil Temperatureb

0 cm 23 cm 32 cm 42 cm 52 cm Upper Organic
Simulation |
R2 0.91 0.85 0.74 0.61 0.66 0.77
Slope 0.97* 0.95 0.87 0.88 1.09 0.94
Intercept -0.03 0.43 0.19 0.05& -0.12 0.11
Simulation 11
R2 0.91 0.85 0.74 0.61 0.66 0.77
Slope 0.97* 0.93 0.83 0.84 1.10 0.92
Intercept -0.08& 0.35 0.07& -0.06& -0.13 0.03&
Simulation 111
R? 0.85 0.82 0.76 0.68 0.67 0.78
Slope 0.98* 0.94 0.88 0.91 0.99* 0.89
Intercept 0.35 0.59 0.33 0.19 -0.18 0.14
Simulation VI
R2 0.85 0.82 0.76 0.68 0.66 0.79
Slope 0.98* 0.93 0.84 0.88 1.08 0.80
Intercept 0.32 0.52 0.22 0.09& -0.05& -0.06&

ods for creating the projected monthly climate (air tempera-
ture and precipitation) are described in McGuire et al
[2000a].

3. Results

3.1. Evaluation of STM Performance

3.1.1. Simulated daily soil temperature. For the black
spruce site at the Bonanza Creek Experimental Forest, the
daily soil temperatures estimated by the four simulations at
various depths (0, 23, 32, 42, and 52 cm and upper organic
soil layer) generally fit the observed data well (Table 4 (top)).
For linear regression analyses between simulated and ob-
served soil temperatures, the proportion of variance explained
(R?) ranged from 0.61 to 0.91, slopes of the analyses ranged
0.80 to 1.10, and intercepts were less than 0.600C. In general,

simulated soil temperatures near the surface were more accu-
rate than simulated soil temperatures deeper in the profile.
For the soil temperature aggregated across the upper organic
layer, which is the temperature that is used to drive soil bio-
geochemical processes in the coupled model, R2 values (0.77
to 0.79), slopes (0.80 to 0.94), and intercepts (-0.06 to 0.14
oC) across the four simulations were similar.

Although these comparisons indicate that the temporal
resolution of internal time step and of input data did not sub-
stantially influence the overall accuracy of daily soil tem-
perature simulated by the STM for the year of observed soil
temperature, there are some seasonal differences among the
simulations. For surface temperature (Figure 4a), simulations
Il and IV tended to underestimate from April to July and

‘tended to overestimate from August to October and in March.

Except for March the surface temperature estimated by simu-
lations I and II did not show these biases. For the soil tem-
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perature of the upper organic layer (Figure 4b), simulations
III and IV tended to underestimate during April, May, De-
cember, and January and tended to overestimate from July to
September and during March. Simulations I and II also
tended to underestimate soil temperature in December and
January and overestimate soil temperature in March.

These patterns suggest that differences among the simula-
tions are related more to the temporal resolution of the input
data than to resolution of the internal time step. To formally
evaluate how differences in daily soil temperature among the
simulations were influenced by differences in the temporal
resolution of internal time step and input data, we calculated

ZHUANG ET AL.: MODELING SOIL THERMAL DYNAMICS AT LARGE SCALES

Drms for various soil depths between pairs of simulations
(Table 5 (top)). At each depth in the profile, Drms was
greater for pairs [-II1, I-IV, II-I1I, and II-1V than for pairs I-II
and III- IV. This result indicates that the simulations were
more influenced by the temporal resolution of input data than
by the temporal resolution of internal time step. Because
Drwms for pairs I-1MI, I-1V, II-III, and II-IV were greater for
depths nearer the surface of the profile with values near 40C
at the surface, it appears that the temporal resolution of input
data primarily influences estimates of soil temperature close
to the surface. For the upper organic layer, Drys between
simulations I-IV and II-IV was less than 10C. Thus the ver-

Table 4. Continued
Monthly Soil Temperaturec
0cm 23 cm 32 cm 42 cm 52cm  Upper Organic Active Layer Depth
Simulation |
R2 0.95 0.88 0.77 0.65 0.82 0.82 0.95
Slope 0.99 0.96 0.89 0.89 1.10 0.95 1.08
Intercept -0.08& 0.43 0.21 0.07& -0.10& 0.11 0.03&
Simulation 11
R2 0.95 0.87 0.77 0.66 0.82 0.82 0.90
Slope 0.99 0.94 0.84 0.86 1.12 0.93 1.43*
Intercept -0.12& 0.35 0.08& -0.05& -0.11& 0.03& 0.06&
Simulation 111
R2 0.92 0.85 0.79 0.74 0.84 0.86 0.85
Slope 0.98 0.94 0.89 0.94 1.03 0.90 0.99
Intercept 0.44 0.62 0.37 0.26 -0.11& 0.50 0.02&
Simulation VI
R2 0.92 0.85 0.80 0.74 0.84 0.86 0.94
Slope 0.99 0.93 0.85 0.91 1.12 0.80 1.00
Intercept 0.42 0.56 0.25 0.15& 0.04& -0.06& -0.01&

.aFi.eld-based estimates are thp dependent variables, and the simulated estimates are the independent variables. Tests for
significance were performed with a two sided t-test ata=0.05 level. The four simulations that varied with respect to the tem-
poral resolutions of internal time step and of climate data used to drive simulations. (See Figure 2 and section 2 for more

information).

bAIl linear regressions were significant ata=0.05 level with p < 0.001. An asterisk indicates slopes that were not signifi-
cantly different from 1.0 and an ampersand indicates intercepts that were not significantly different from 0.0.

CAll linear regressions were signiﬁf:ant ato=0.05 level with p < 0.001. None of the slopes were significantly different from
(1)8 except for the slope indicated with asterisk. An ampersand indicates intercepts that were not significantly different from
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Figure 4. Observed and simulated daily soil temperatures for (a) the surface of the soil and (b) the upper organic

soil layer.

sion of the model that uses 0.5-day internal time step and
monthly input data may be acceptable if a root-mean-square
error of 10C in daily soil temperature is acceptable for driving
soil processes in a daily biogeochemical model.

3.1.2. Simulated monthly soil temperature and active
layer depth. The monthly soil temperature at the various
depths and the active layer depth estimated by the four simu-
lations generally fit the observed data well (Table 4(bottom)).
For linear regression analyses between simulated and ob-
served soil temperatures, the proportion of variance explained
(R2) ranged from 0.65 to 0.95, slopes ranged from 0.80 to
1.12, and the intercepts were less than 0.630C. In contrast to
the analysis for simulated daily soil temperatures, the accu-
racy of simulated monthly soil temperatures did not deterio-
rate with increasing depth, although the simulations were
most accurate at the surface. For the soil temperature aggre-
gated across the upper organic soil layer, R2 values (0.82 to
0.86), slopes (0.80 to 0.95), and intercepts (-0.06 to 0.500C)
across the four simulations were similar. For the regression
analysis between observed and simulated active layer depths,
R2 values (0.85 to 0.95), slopes (0.99 to 1.43), and intercepts
(-0.01 to 0.06 m) across the four simulations were compara-
ble. The seasonal differences noted in the analysis of simu-
lated daily soil temperatures is reflected in the comparison

between observed and simulated monthly soil temperatures
(Figure 5). For monthly surface temperature (Figure 5a),
simulations I and II matched the observed data from May to
September, tended to underestimate from October to Decem-
ber, and tended to overestimate from February to April.
Simulations III and IV slightly underestimated monthly soil
temperature from May to July and in November, December,
and February and slightly overestimated soil temperature
from August to October. For monthly temperature of the up-
per organic soil layer (Figure 5b), simulations I and II per-
formed well from May to September, but underestimated
from October to January. Except for August, September, and
March, simulations III and IV tended to underestimate
monthly temperature in the upper organic soil layer.

These patterns suggest that differences among the simula-
tions were related more to temporal resolution of the input
data than to resolution of the internal time step, which is a
conclusion from the analysis of daily soil temperatures. Con-
clusions from the results of the monthly Drys analyses (Ta-
ble 5(bottom)) are also similar to those of the daily analyses
as they indicate that (1) the simulations were more influenced
by the temporal resolution of input data than by the temporal
resolution of internal time step, (2) the temporal resolution of
the input data primarily influences estimates of temperature
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coupled model reproduced the observed data well at various
depths in the profile for white spruce (Figure 10), aspen (Fig-
ure 11), and tussock tundra (Figure 12) ecosystems in Alaska.
For regressions between simulated and observed temperatures
close the soil surface, and (3) Drus for all pairs of simula-
tions was less than 10C for the upper organic soil layer. For
active layer depth, Drvs was less than 0.06 m for all pairs of
simulations. Thus the version of the model that uses 0.5-day
internal time step and monthly input data accurately estimates
the depth of the active layer and may be acceptable if a root-
mean-square error of 10C in monthly soil temperature is ac-
ceptable for driving soil processes in a monthly biogeochemi-
cal model.

3.2. Uncertainty Analyses

For the uncertainty analysis under the normal climate sce-
nario, 30 to 80% of the variance in monthly soil temperature
of the upper organic soil layer was explained by uncertainty
in a subset of the parameters (Table 1, Figure 6), including
the moss thickness (V1), moss thermal conductivity (V5 and
V6), and snow thermal conductivity (V25). From January to
April, uncertainty in moss thickness (Figure 6, V1) explained
less variability than from June to October. Soil temperature
was sensitive to uncertainty in the parameters describing the
thermal conductivity of thawed and frozen moss (Figure 6),
but was more sensitive to uncertainty in thermal conductivity
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of thawed moss (V6) during summer than to the uncertainty
of thermal conductivity of frozen moss (V5) during winter
(Figure 6). Although uncertainty in snow thermal conductiv-
ity (V25) explained almost 30% of the variability in soil tem-
perature from January to April, it only explained 2% and 11%
of the variability in November and December, respectively
(Figure 6).

The sensitivity of soil temperature in the upper organic
layer to uncertainty in each of the parameters varied among
the nine climate scenarios. The pattern of sensitivity among
climate scenarios to uncertainty in the thermal conductivity of
snow (Figure 7) and in moss thickness (Figure 8) illustrates
that the pattern varies among parameters. For snow thermal
conductivity, the sensitivity of soil temperature of the upper
organic layer to uncertainty in this parameter ranged from ap-
proximately 10 to 30% from December to April under the
normal and low temperature scenarios (Figure 7a and 7b), but
soil temperature was insensitive during other months of the
year and under the high temperature scenarios (Figure 7c).
For moss thickness, the sensitivity of soil temperature to un-
certainty in this parameter ranged from approximately 20 to
30% from May to October under all temperature scenarios
(Figure 8). From December to April, uncertainty in moss
thickness explains less than 10% of the variability in soil
temperature across scenarios because snow thermal conduc-
tivity is a more important parameter in these months. The
uncertainty analyses suggest that the accuracy to which pa-

Table 5. Root Mean Square (RMS) Deviations of Simulated Daily and Monthly Soil Temperature
Between Pairwise Combinations of Simulations I, If, III, and IV of Soil Temperature and Active
Layer Depths for the Black Spruce Stand at Bonanza Creek Experimental Forest from May 1996

to April 19972

Daily Soil Temperature

0cm 23 cm 32 cm 42 cm 52 cm Upper Organic
L1 0.43 0.17 0.71 0.18 0.09 0.14
I, 11 3.85 1.16 0.85 0.67 0.62 1.52
L1V 3.85 1.14 0.84 0.67 0.63 0.88
I 1 3.90 1.25 0.98 0.75 0.65 1.49
1Y 3.90 1.23 0.93 0.72 0.64 0.90
1L, IV 0.05 0.11 0.20 0.15 0.22 0.86
Monthly Soil Temperature
0cm 23 cm 32 cm 42 cm 52 cm  Upper Organic  Active Layer
Depth (m)
LI 0.13 0.14 0.21 0.17 0.08 0.13 0.03
I, 111 3.11 1.07 0.78 0.60 0.56 0.67 0.01
LIV 3.10 1.05 0.78 0.60 0.57 0.79 0.01
11, 11T 3.13 1.16 0.92 0.70 0.60 0.74 0.04
LIV 3.13 1.14 0.87 0.67 0.59 0.81 0.06
L, IV 0.05 0.10 0.19 0.14 0.21 0.40 0.02

aFour simulations that varied with respect to the temporal resolutions of internal time step and of climate data
used to drive the simulations (see Figure 2 and section 2 for more information). The daily RMS deviation values
were calculated one the basis of 365 daily estimates of soil temperature, and the monthly RMS deviations were
calculated on the basis of 12 monthly estimates of soil temperature.
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Figure 5. Observed and simulated monthly soil temperatures
for (a) the surface of the soil and (b) the upper organic soil
layer.
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Figure 6. Proportion of variation in simulated soil tempera-
ture of the upper organic layer explained by variability in pa-
rameters in the uncertainty analyses conducted in this study.
See Table 1 for additional information on parameters in these
analyses.
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Figure 7. Proportion of variation in simulated soil tempera-
ture of the upper organic layer to variation in snow thermal
conductivity in uncertainty analyses conducted for nine dif-
ferent climate scenarios: (a) low-temperature scenarios, (b)
normal temperature scenarios, and (c) high-temperature sce-
narios. See Table 2 for additional information on the climate
scenarios.

rameters should be determined depends on the parameter and
for some parameters depends on the climate space to which
the model is applied.

3.3. Applications to Different Ecosystem Types

To evaluate the performance of the coupled model for dif-
ferent ecosystem types, in which the STM receives snow
depth data from the hydrology model of TEM, we param-
eterized the model for a black spruce ecosystem in Canada
and for white spruce, aspen, and tussock tundra ecosystems in
Alaska (Table 1; see section 2). For the black spruce ecosys-
tem, soil temperatures simulated by the coupled model repro-
duced the observed data well at various depths in the profile
(Figure 9). For regressions between simulated and observed
at different depths, R2 ranged from 0.96 to 0.98, slopes
ranged from 0.88 to 1.04, and intercepts ranged from 0.72 to
1.560C (Table 6 (top)). These results indicate that the model
can be applied to black spruce ecosystems with different
structural characteristics and different soil thermal regimes
when the model has information on structural characteristics
relevant to the dynamics of the soil thermal regime.

For application to other ecosystems in high-latitude re-
gions of North America, soil temperatures simulated by the
coupled model reproduced the observed data well at various
depths in the profile for white spruce (Figure 10), aspen (Fig-
ure 11), and tussock tundra (Figure 12) ecosystems in Alaska.
For regressions between simulated and observed temperatures

at different depths in these ecosystems, R2 ranged from 0.72
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Figure 8. Proportion of variation in simulated soil tempera-
ture of the upper organic layer to variation in moss thickness
in uncertainty analyses conducted for nine different climate
scenarios: (a) low-temperature scenarios, (b) normal tem-
perature scenarios, and (c) high-temperature scenarios. See
Table 2 for additional information on the climate scenarios.

to 0.96, slopes ranged from 0.71 to 1.04, and intercepts
ranged from -0.64 to 0.600C (Table 6 (middle-bottom)).
These results indicate that the model can be applied to differ-
ent high-latitude ecosystems when the model has information
on structural characteristics, physical properties, and bound-
ary conditions relevant to the dynamics of the soil thermal re-
gime.

3.4. Evaluation of Carbon Fluxes Simulated for a Black
Spruce Forest

The estimates of monthly GPP and RESP simulated by the
STM-TEM for the simulated soil temperature of the upper or-
ganic soil layer in the baseline scenario were highly corre-
lated with tower-based estimates for the black spruce site in
Canada (Figure 13; R2 = 0.93 for GPP and 0.94 for RESP).
While the slopes of regression between observed and simu-
lated were not significantly different from 1 for both GPP and
RESP (slopes = 1.01 for GPP and 1.06 for RESP), the inter-
cepts were significantly different from 0 (intercept = -7.5 g C
m-2 month-! for GPP and -10.6 g C m-2 month-! for RESP).
Simulated monthly NEP generally fit the seasonal trends of
the field-based estimates, although the correlation between
field-based and simulated estimates of NEP (R2 = 0.60) was
lower than for estimates of GPP and RESP. Similar to the
relationships between observed and simulated GPP and
RESP, the slope between simulated and observed NEP (0.82)
was not significantly different from 1, while the intercept (-
2.21 g C m-2 month-1) was statistically different from 0. The
estimates of GPP, RESP, and NEP of scenario B were highly
correlated with estimates simulated for scenarios I and D (R2
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=0.99 for all B-I and B-D comparisons) with slopes that were
not significantly different from 1 (slopes ranged from 0.96 to
1.02 for B-I comparisons and from 0.97 to 1.02 for B-D com-
parisons) and intercepts (less than 0.50 g C m-2 month-! for
all B-I and B-D comparisons) that were not significantly dif-
ferent from 0. These analyses indicate that differences of less
than 10C in simulated temperatures for the upper organic soil
layer do not significantly affect the short-term carbon dy-
namics simulated by the STM-TEM.

3.5. Application to the Range of Black Spruce Ecosystems
across North America

We applied the parameterization of the STM-TEM for the
black spruce forest in Canada to simulate soil thermal dy-
namics for the range of black spruce forest ecosystems across
North America north of 500N from 1900 to 2100 at a spatial
resolution of 0.50 latitude x longitude. This simulation main-
tained constant structural characteristics of the simulated soil
profile, as defined by the black spruce site used to param-
eterize the model, but was driven by air temperature and snow
depth that varied both spatially and temporally. The simula-
tion of mean annual soil temperature within the upper organic
soil layer for four different decades (1930s, 1980s, 2030s, and
2080s) responded to the spatial and temporal climatic vari-
ability that was used to drive the simulation (Plate 1). For all
decades a north-south gradient in soil temperatures for this
layer was maintained across the range of black spruce in
North America north of 500N. Across decades, the soil tem-
perature at this depth increased from the 1930s to the 2080s
in a fashion consistent with the scenario of climatic warming
that was used to drive the simulation. These results indicate

N
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Figure 9. Monthly observed and simulated soil temperatures

for an old black spruce ecosystem in northern Manitoba, Can-
ada, from 1994 to 1996.
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Table 6. Slope, Intercept, and Proportion of Variation
Explained by Regression Analyses Between Observed
and Simulated Soil Temperature at Various Depths in
the Soil Profile for an Old Black Spruce Forest in
Canada, a White Spruce Forest in Alaska, an

Aspen Forest in Alaska, and a Tussock

Tundra Site in Alaskaa.b

Old Black Spruce

5cm 10 cm 20 cm
R2 0.96 0.98 0.96
Slope 1.04* 0.88 0.98*
Intercept 0.72 1.40 1.56
White Spruce
0cm 15 cm 30 cm
R2 0.96 0.81 0.78
Slope 0.95* 0.93* 0.94*
Intercept -0.54 -0.17& -0.18&
Aspen
0cm 15 cm 30 cm
R2 0.95 0.84 0.72
Slope 0.99* 0.85 0.71
Intercept -0.64 0.46 0.60
Tussock Tundra
10 cm 20 cm 35cm 40 cm
R2 0.96 0.82 0.82 0.74
Slope 1.02* 1.04* 1.04* 0.95*
Intercept -0.28 -0.51 -0.22 -0.50

aField-based soil temperatures are the dependent variables, and the

simulated soil temperatures are the independent variables. Tests for -

significance were performed with a two-sided t-test ata=0.05 level.
Simulations were conducted with the coupled version of the model
(STM-TEM), in which the soil Thermal model (STM) was coupled to
the terrestrial ecosystem model (TEM). For more information see
Table 3 and section 2.

bAll linear regressions were significant at a=0.05 level with p <
0.001. An asterisk indicates slopes that were not significantly differ-
ent from 1.0 and an ampersand indicates intercepts that were not
significantly different from 0.0.

that the model has the potential to be used at large spatial
scales to simulate the response of the soil thermal regime to
climate change and variability.

4. Discussion

In this study we modified an extant model of permafrost
dynamics for incorporation into a large-scale biogeochemical
model that is driven by monthly climate data. Our incorpora-
tion of permafrost dynamics was based on an extant version
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of the Goodrich model, which uses a numerical approach to
simulate soil temperatures throughout the soil profile. Al-
though analytical approaches to heat conduction represent an
alternative to the numerical approach we have implemented
in this study, they have a number of limitations for applica-
tions to ecosystems affected by permafrost [Goodrich, 1976;
Romanovsky et al.,1997]. Williams and Smith [1989] point
out that analytical solutions to the heat conduction are only
applicable when transient effects of phase change are not im-
portant. The numerical solution of the Goodrich model is able
to consider how phase changes are influenced by the effects
of latent heat, which dominate the thermal dynamics of a
freezing and thawing soil. In contrast, analytic approaches
are only capable of predicting monotonic thaw penetration
and tend to overestimate thaw depth because the approach
fails to properly account for heat storage effects [see Good-
rich, 1976]. Possible disadvantages of the Goodrich approach
include computational costs and the number of parameters
that need to be specified for implementing the approach.
Therefore, we evaluated both temporal and spatial scaling is-
sues to determine suitability of this approach for incorpora-
tion into a large-scale ecosystem model.

4.1. Temporal Scaling Issues

Romanovsky et al. [1997] conducted a comprehensive
evaluation of three numerical models used in simulations of
the active layer and permafrost temperature regimes with re-
spect to internal time step and with respect to the depth step

20
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Figure 10. Monthly observed and simulated soil tempera-
tures for a white spruce ecosystem in Alaska from 1994 to
1997.
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Figure 11. Monthly observed and simulated soil temperatures for an aspen ecosystem in Alaska from 1994 to

1997.

of different layers, and concluded that the choice of optimum
time and depth steps appears to be specific to the application.
The choices we made for depth steps in this study were based
on what we considered to be an acceptable compromise be-
tween computational efficiency and simulation accuracy. Our
evaluation of model performance indicated that there was lit-
tle difference between simulations of daily or monthly soil
temperature that used different internal time steps considered
in this study (0.5 hours and 0.5 days), and all applications of
the model accurately simulated the depth of the active layer.
Between simulations that used input climate data at different
temporal resolutions (daily versus monthly), we did find
some differences in simulated daily and monthly soil tem-
perature. Our evaluation of these differences indicated that
monthly resolution climate data could be used to drive simu-

lations if an error of less than 10C is acceptable for driving
soil biogeochemical processes. Results of a sensitivity analy-
sis indicate that an error of less than 10C in the temperature of
the upper organic soil layer does not significantly affect the
carbon dynamics simulated by the STM-TEM. Furthermore,
simulations with the STM-TEM indicate that annual carbon
balance across the boreal region of North America is sensitive
to the timing of spring thaw [Zhuang et al., unpublished,
1999], which is a conclusion reached in a site-specific analy-
sis of this issue by Frolking et al. [1996]. The ongoing de-
velopment of data sets that describe the freezing and thawing
of the land surface at large spatial scales [e.g., Running et al.,
1999; Frolking et al., 1999] represent important information
for evaluating the timing of soil thermal dynamics simulated
by the STM-TEM at large spatial scales.
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4.2. Spatial Scaling Issues

The application of the model to the range of black spruce
ecosystems across North America north of 500N from 1900 to
2100 demonstrated to us that the soil thermal model has the
capability to operate over spatial and temporal domains that
consider substantial variation in surface climate. It is impor-
tant to recognize that this application did not consider spatial
variation in vegetation distribution. It also did not consider
spatial variation in structural characteristics, physical proper-
ties, and lower boundary conditions of the soil thermal re-
gime. The application also did not consider temporal changes
in vegetation, structural characteristics, and physical proper-
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ties associated with disturbance and gradual vegetation dy-
namics, e.g., changes in tree line. Our evaluation of model
performance for different representative ecosystem types of
high-latitude regions in North America indicated that the
model can be applied to different vegetation types when it has
information on structural characteristics, physical properties,
and lower boundary conditions relevant to the soil thermal
regime. Although a number of vegetation classifications are
available at the global scale, classifications that can be linked
to structural characteristics, physical properties, and lower-
boundary conditions of the soil thermal regime in high lati-
tudes will be most useful in the context of simulating soil
thermal dynamics at large spatial scales. The development of
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Figure 12. Monthly observed and simulated soil temperatures for a tundra ecosystem in Alaska from 1995 to 1997.
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Figure 13. Field-based and simulated estimates of (a) monthly gross primary production (GPP) and (b) ecosystem
respiration (RESP) for an old black spruce ecosystem in northern Manitoba, Canada from 1994 to 1997. Simulated
soil temperatures were used to drive some of the biogeochemical processes in the coupled STM-TEM. Field-based

estimates are from Clein et al. [in press].

spatially resolved data sets that describe structural character-
istics, physical properties, and lower-boundary conditions of
the soil thermal regime are necessary to facilitate progress in
modeling the soil thermal regime at large spatial scales.

Our uncertainty analyses are relevant to the development
of spatially resolved data sets in that they provide insight on
which structural characteristics and physical properties of the
soil thermal regime need to be determined for improving spa-
tial applications of the STM-TEM. These analyses were pri-
marily focused on soil temperature of the upper organic layer,
which is the temperature used to drive soil biogeochemical
processes in the coupled model. The uncertainty analyses
identified that soil temperature estimates of the model for the
organic layer were sensitive to variability in moss thickness
and thermal conductivity under "normal" conditions of air
temperature and snow depth, which is consistent with the
field studies of Dyrness [1982]. Other modeling studies, for
example, Frolking and Crill [1994] who adopted the method
of Clymo [1984], highlight the need to consider how the
physical properties of moss influence soil thermal dynamics.

In addition, soil temperature was sensitive to uncertainty in
snow thermal conductivity, a result that has been highlighted
in other modeling studies [Zhang et al., 1996, 1997]. The un-
certainty analyses of the study also revealed that the accuracy
to which these parameters should be determined depends on
the climate, a result that has been reported for other parame-
ters in land surface schemes [Pitman, 1994]. With respect to
the development of spatial data sets that describe the struc-
tural and physical properties of the soil thermal regime, our
study indicates that effort should be prioritized on developing
data sets that describe spatial variability of snow and moss
thickness and of snow and moss thermal conductivity. Be-
sides the development of data sets for "best" estimates of the
parameters, it is also important to develop data sets for un-
certainty in the parameter estimates.

4.3. Additional Issues and Future Directions

The dynamics of snow influence the soil thermal regime in
cold regions because the low thermal conductivity of snow
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makes it a good insulator [Goodrich, 1976, 1978a, 1978b;
Zhang et al., 1996; Sturm et al., 2001]. Data sets for the
timing, spatial distribution, and properties of snow represent a
major uncertainty because the density of weather stations in
high-latitude regions is low, and the reliability of precipitation
data from these stations is low [McGuire et al., 2000a]. The
thermal properties of snow may also need to be considered in
more detail than in the version of the STM in this study, in
which snow cover is homogeneous with respect to thermal
conductivity. Some studies have shown that separation of
snow cover into wind slab and depth hoar fractions influences
permafrost dynamics [Zhang et al, 1996; Loth and Graf,
1998]. Microrelief and vegetation may interact with wind
and snow seasonal cover to influence the physical and ther-
mal properties of snow to affect the soil thermal regime in
permafrost dominated regions [Sturm et al., 2001]. As it is
not clear whether data sets that describe the spatial and tem-
poral variability of thermal properties for multiple layers of
snow can be developed, the current version of the STM does
not consider this variability.

Several studies have demonstrated that soil drainage in
high-latitude ecosystems influences carbon dynamics and
storage by affecting decomposition [Oechel et al., 1995;
Harden et al., 2000; Christensen et al., 1998]. The current
version of the STM-TEM primarily uses the hydrology of a
freely draining large-scale hydrological model [Vorosmarty et
al., 1989] to provide the STM with snow water equivalent,
but the STM-TEM does consider how the active layer affects
hydrology to influence soil thermal dynamics. As the STM-
TEM accurately simulates active layer depth, it should be able
to better consider spatial variability in carbon dynamics if it is
modified so that active layer dynamics influence the hydrol-
ogy of the moss, organic, and mineral layers in the soil and so
that the hydrology of these layers influence both the soil
thermal regime and the carbon dynamics. This is especially
important in ecosystems recovering from disturbance events,
which may substantially affect active layer depth and alter the
thickness and properties of the moss and organic layers in the
soil. We are currently developing a version of the STM-TEM
that has been modified to consider these issues. Data sets that
describe the spatial and temporal variability in the moisture of
soil layers and ecosystem carbon dynamics with respect to
soil drainage and disturbance history are needed to evaluate
the performance of coupled models of soil thermal and eco-
system dynamics.
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