Purdue student Megan Varcie is studying atmospheric science at Purdue. She is a student ambassador for the Department of Earth, Atmospheric, and Planetary Sciences (EAPS). Megan is a sophomore majoring in atmospheric science and is currently a member of the EAPS Student Council. She has also been involved in various other campus organizations, including the Purdue University Dance Marathon Morale Committee and the Purdue University Student Council. Megan describes EAPS as being a great place to work with amazing professors and staff and with other students from all over the world. She says that the EAPS community has been very supportive and has helped her to feel comfortable on campus. Megan is currently working on her research projects under the guidance of her advisor, Dr. Ernest Agee, and is studying the impact of climate change on tornadoes. She is also a member of the Purdue University Atmospheric Science Association, where she has the opportunity to network with other students and professionals in the field of atmospheric science.

Purdue student Jake Winters is studying environmental geoscience at Purdue. He is a senior majoring in environmental geoscience and is currently a member of the Purdue University Environmental Geoscience Club. Jake has been involved in various campus organizations, including the Purdue University Student Council, the Purdue University Dance Marathon Morale Committee, and the Purdue University Student Council. Jake describes EAPS as being a great place to work with amazing professors and staff and with other students from all over the world. He says that the EAPS community has been very supportive and has helped him to feel comfortable on campus. Jake is currently working on his research projects under the guidance of his advisor, Dr. Larry Wind, and is studying the impact of climate change on soil health. He is also a member of the Purdue University Soil Science Association, where he has the opportunity to network with other students and professionals in the field of environmental geoscience.
Have you always wanted to learn more about other planets? Does the idea of studying craters, asteroids, and rocks from outer space excite you? Planetary sciences is a multidisciplinary program that incorporates geology, astrobiology, physics, and atmospheric science — to name just a few fields. You can study the formation of bodies in space, the geologic structures on other planets, and the mechanics of orbits. This program is a first step toward possible research careers at the National Aeronautics and Space Administration, at the NASA Jet Propulsion Laboratory, and in academia.

Meet Brandon Smith

Hometown: Lafayette, Indiana
Major: Planetary Sciences
Year: Junior

Are you fascinated by the weather? Do you wonder how it develops and progresses, how scientists predict it, and what factors influence it? Are you good at physics and math? If you major in atmospheric science, you will study severe storms, climate change, and natural hazards. You'll learn from top faculty in meteorology and climatology, gain valuable hands-on experience, and have the opportunity to participate in research that ranges from forecasting severe weather to analyzing global changes over time.

Earth/space science education majors prepare to teach earth and space sciences at the middle, junior high, and high school levels — grades five through 12. You'll learn how to engage students while also receiving a focused specialization that few such science education programs can boast. With the combination of our student-focused approach to teaching and an in-depth education in the earth sciences, you will be prepared to share the fascinating principles of earth and space sciences with young minds.

Do you love rock formations? Are you fascinated by the mechanics of floods, landslides, and earthquakes? Geology and geophysics majors study the internal structures, materials, chemical processes, physical processes, and the biological and physical history of the Earth. All geology and geophysics majors complete a field experience course, which ensures that you will have research know-how when you graduate. You will enter graduate school or the workforce exposed to the skills and knowledge to succeed.

Environmental geoscience majors use a multidisciplinary approach to address global issues such as air and water quality and climate change. You’ll learn how to use principles of geology, atmospheric science, physics, and chemistry to help communities become healthier and safer. From analyzing ecosystems and groundwater contamination to advising on environmental public policy, you will have the opportunity to problem-solve using environmental geoscience.